Question 13.73: The stress-strain diagram of the material of a column can be...

The stress-strain diagram of the material of a column can be approximated as shown. Plot P / A vs. K L / r for the column.
Tangent Moduli. From the stress – strain diagram,

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\left(E_{t}\right)_{1}=\frac{200\left(10^{6}\right)}{0.001}=200 GPa \quad 0 \leq \sigma<200 MPa \\\left(E_{t}\right)_{2}=\frac{(350-200)\left(10^{6}\right)}{0.004-0.001}=50 GPa \quad 200 MPa <\sigma \leq 350 MPa

Critical Stress. Applying Engesser’s equation,

\sigma_{c r}=\frac{P}{A}=\frac{\pi^{2} E_{t}}{\left(\frac{K L}{r}\right)^{2}} \quad(1)

If E_{t}=\left(E_{t}\right)_{1}=200 GPa, Eq. (1) becomes

\frac{P}{A}=\frac{\pi^{2}\left[200\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}}=\frac{1.974\left(10^{6}\right)}{\left(\frac{K L}{r}\right)^{2}} MPa

When \sigma_{ cr }=\frac{P}{A}=\sigma_{Y}=200 MPa, this equation becomes

200\left(10^{6}\right)=\frac{\pi^{2}\left[200\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}} \\\frac{K L}{r}=99.346=99.3

If E_{t}=\left(E_{t}\right)_{2}=50 GPa, Eq. (1) becomes

\frac{P}{A}=\frac{\pi^{2}\left[50\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}}=\frac{0.4935\left(10^{6}\right)}{\left(\frac{K L}{r}\right)^{2}} MPa

when \sigma_{ cr }=\frac{P}{A}=\sigma_{ Y }=200 MPa, this equation gives

200\left(10^{6}\right)=\frac{\pi^{2}\left[50\left(10^{9}\right)\right]}{\left(\frac{K L}{r}\right)^{2}} \\\frac{K L}{r}=49.67=49.7
Using these results, the graphs of \frac{P}{A} \text { vs. } \frac{K L}{r} \text { as shown in Fig. } a \text { can be plotted. }

2

Related Answered Questions