Determine the location of the shear center for the cross section shown in Figure P9.71. Use dimensions of a = 50 mm, b = 100 mm, h = 300 mm, and t = 5 mm. Assume that the thickness t is constant for all portions of the cross section.
Determine the location of the shear center for the cross section shown in Figure P9.71. Use dimensions of a = 50 mm, b = 100 mm, h = 300 mm, and t = 5 mm. Assume that the thickness t is constant for all portions of the cross section.
Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the shape can be calculated as:
\begin{aligned}I_{N A} &=\frac{(5 mm )(300 mm )^{3}}{12}+2\left[(50 mm +100 mm )(5 mm )\left(\frac{300 mm }{2}\right)^{2}\right] \\&=11,250,000 mm ^{4}+33,750,000 mm ^{4}=45,000,000 mm ^{4}\end{aligned}Shear Flow in Right-side Flange: Derive an expression for Q for the right-side flange as a function of a temporary variable u which originates at the right end of the right-side flange.
Express the shear flow q in the right-side flange using Q_{\text {right }}.
q_{ right }=\frac{V Q_{\text {right }}}{I}=\left(\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\right) uIntegrate with respect to the temporary variable u to determine the resultant force in the right-side flange.
\begin{aligned}F_{\text {right }} &=\int_{0}^{100 mm } q_{\text {right }} d u \\&=\int_{0}^{100 mm }\left(\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\right) u d u \\&=\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\left[\frac{1}{2} u^{2}\right]_{0}^{100 mm }=0.0833333 V\end{aligned}
Shear Flow in Left-side Flange: Derive an expression for Q for the leftside flange as a function of a temporary variable v which originates at the left end of the left-side flange.
Express the shear flow q in the left-side flange using Q_{\text {left }}.
q_{\text {left }}=\frac{V Q_{\text {left }}}{I}=\left(\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\right) vIntegrate with respect to the temporary variable v to determine the resultant force in the left-side flange.
\begin{aligned}F_{\text {left }} &=\int_{0}^{50 mm } q_{\text {left }} d v \\&=\int_{0}^{50 mm }\left(\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\right) v d v \\&=\frac{V\left(750 mm ^{2}\right)}{45,000,000 mm ^{4}}\left[\frac{1}{2} v^{2}\right]_{0}^{50 mm }=0.0208333 V\end{aligned}
Shear center: To determine the shear center, sum moments about the point where the web connects to the lower flange.