Question 9.71: Determine the location of the shear center for the cross sec...

Determine the location of the shear center for the cross section shown in Figure P9.71. Use dimensions of a = 50 mm, b = 100 mm, h = 300 mm, and t = 5 mm. Assume that the thickness t is constant for all portions of the cross section.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the shape can be calculated as:

\begin{aligned}I_{N A} &=\frac{(5  mm )(300  mm )^{3}}{12}+2\left[(50  mm +100  mm )(5  mm )\left(\frac{300  mm }{2}\right)^{2}\right] \\&=11,250,000  mm ^{4}+33,750,000  mm ^{4}=45,000,000  mm ^{4}\end{aligned}

Shear Flow in Right-side Flange: Derive an expression for Q for the right-side flange as a function of a temporary variable u which originates at the right end of the right-side flange.

Q_{\text {right }}=\bar{y}^{\prime} A^{\prime}=(150  mm )[(5  mm ) u]=\left(750  mm ^{2}\right) u

Express the shear flow q in the right-side flange using Q_{\text {right }}.

q_{ right }=\frac{V Q_{\text {right }}}{I}=\left(\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\right) u

Integrate with respect to the temporary variable u to determine the resultant force in the right-side flange.

\begin{aligned}F_{\text {right }} &=\int_{0}^{100  mm } q_{\text {right }} d u \\&=\int_{0}^{100  mm }\left(\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\right) u d u \\&=\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\left[\frac{1}{2} u^{2}\right]_{0}^{100  mm }=0.0833333 V\end{aligned}

 

Shear Flow in Left-side Flange: Derive an expression for Q for the leftside flange as a function of a temporary variable v which originates at the left end of the left-side flange.

Q_{\text {left }}=\bar{y}^{\prime} A^{\prime}=(150  mm )[(5  mm ) v]=\left(750  mm ^{2}\right) v

Express the shear flow q in the left-side flange using Q_{\text {left }}.

q_{\text {left }}=\frac{V Q_{\text {left }}}{I}=\left(\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\right) v

Integrate with respect to the temporary variable v to determine the resultant force in the left-side flange.

\begin{aligned}F_{\text {left }} &=\int_{0}^{50  mm } q_{\text {left }} d v \\&=\int_{0}^{50  mm }\left(\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\right) v d v \\&=\frac{V\left(750  mm ^{2}\right)}{45,000,000  mm ^{4}}\left[\frac{1}{2} v^{2}\right]_{0}^{50  mm }=0.0208333 V\end{aligned}

 

Shear center: To determine the shear center, sum moments about the point where the web connects to the lower flange.

\begin{aligned}V e &=F_{\text {right }}(300  mm )-F_{\text {left }}(300  mm ) \\e &=\frac{F_{\text {right }}(300  mm )-F_{\text {left }}(300  mm )}{V} \\&=\frac{(0.0833333 V )(300  mm )-(0.0208333 V )(300  mm )}{V} \\&=25  mm -6.25  mm =18.75  mm\end{aligned}

 

 

Related Answered Questions