Question 9.72: Locate the shear center for the cross section shown in Figur...

Locate the shear center for the cross section shown in Figure P9.72. Assume that the web thickness is the same as the flange thickness.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section Properties: 

Horizontal distance to centroid (measured from center of left-side flange).

\begin{aligned}\bar{z} &=\frac{(5  in .)(10  in .)(0.375  in .)+(10  in .)(0.375  in .)(5  in .)}{(0.375  in .)(3  in .)+(10  in .)(0.375  in .)+(0.375  in .)(5  in .)} \\&=\frac{18.75  in .{ }^{3}+18.75  in .{ }^{3}}{1.125  in .{ }^{2}+3.75  in .{ }^{2}+1.875  in .{ }^{2}}=\frac{37.5  in .^{3}}{6.75  in .^{2}}=5.5555556  in .\end{aligned}

Moment of inertia about z axis.

I_{z}=\frac{1}{12}(0.375  in .)(3  in .)^{3}+\frac{1}{12}(0.375  in .)(5  in .)^{3}=4.75  in. ^{4}

 

Shear Flow Resultant: Consider the right-side flange. Q for the 5-in. deep flange can be expressed as:

\begin{aligned}Q=&\left(\frac{2.5  in .+y}{2}\right)((0.375  in .)(2.5  in .-y)) \\&=\left(1.25  in .+\frac{y}{2}\right)\left[0.9375  in .^{2}-(0.375  in .) y\right] \\&=1.1718750  in .^{3}+\left(0.46875  in .^{2}\right) y \\&-\left(0.46875  in .^{2}\right) y-(0.1875  in .) y^{2} \\&=1.1718750  in .^{3}-(0.1875  in .) y^{2} \\q=& \frac{V Q}{I}=\frac{V}{4.75  in .^{4}}\left[1.1718750  in .^{3}-(0.1875  in .) y^{2}\right]\end{aligned}

 

\begin{aligned}F_{\text {right }} &=\int q d y \\&=\int_{-2.5 \text { in. }}^{2.5 \text { in. }} \frac{V}{4.75 \text { in. }^{4}}\left[1.1718750 \text { in. }^{3}-(0.1875 \text { in. }) y^{2}\right] d y \\&=\frac{V}{4.75 \text { in. }^{4}}\left[\left(1.1718750 \text { in. }^{3}\right) y-\frac{(0.1875 \text { in. })}{3} y^{3}\right]_{-2.5 \text { in. }}^{2.5 \text { in. }} \\&=\frac{V}{4.75 \text { in. }^{4}}\left[2.9296875  in .^{4}-0.9765625  in .^{4}-\left(-2.9296875  in .^{4}\right)-0.9765625  in. ^{4}\right] \\&=0.8223684 V\end{aligned}

 

Shear Center: Sum moments about the center of the left-side flange to find

\begin{aligned}&V(\bar{z}+e)=F_{\text {right }}(10 \text { in. }) \\&\bar{z}+e=\frac{F_{\text {right }}(10 \text { in. })}{V}=\frac{(0.8223684 V)(10  in .)}{V}=8.223684 \text { in. } \\&e=8.223684 \text { in. }-5.5555556 in .=2.67  in .\end{aligned}

 

 

Related Answered Questions