Question 9.75: Determine the location of the shear center O of a thin-walle...

Determine the location of the shear center O of a thin-walled beam of uniform thickness having the cross section shown in Figures P9.75.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section Properties: For the arc

\begin{aligned}y &=r \cos \theta \quad d A=t d s=t r d \theta \\d I_{ arc } &=y^{2} d A=r^{2} \cos ^{2} \theta(t r d \theta)=r^{3} t \sin ^{2} \theta d \theta \\I_{ arc } &=r^{3} t \int_{0}^{\pi} \cos ^{2} \theta d \theta \\&=r^{3} t \int_{0}^{\pi}\left(\frac{\cos 2 \theta+1}{2}\right) d \theta \\&=\frac{1}{2} \pi r^{3} t\end{aligned}

 

The moment of inertia for the complete cross section is:

I=I_{ arc }+2\left[r t(r)^{2}\right]=\frac{1}{2} \pi r^{3} t+2 r^{3} t=\frac{r^{3} t}{2}(\pi+4)

Derive an expression for the value of Q for the upper horizontal portion in terms of a temporary variable u:

Q_{\text {upper }}=r(u \times t)=r^{2} t

 

 

 

For locations in the arc, Q can be expressed as:

Q_{\text {arc }}=Q_{\text {upper }}+\int d Q

where d Q=y d A=r \cos \theta(t r d \theta)=r^{2} t \cos \theta d \theta

Q_{ arc }=r^{2} t+r^{2} t \int_{0}^{\theta} \cos \theta d \theta=r^{2} t(1+\sin \theta)

 

Shear Flow Resultant (for the upper portion): 

\begin{aligned}q_{\text {upper }} &=\frac{V Q_{u}}{I}=\frac{V r t}{\frac{r^{3} t}{2}(\pi+4)} u=\frac{2 V}{r^{2}(\pi+4)} u \\F_{\text {upper }} &=\int q_{\text {upper }} d u \\&=\int_{0}^{r} \frac{2 V}{r^{2}(\pi+4)} u d u=\frac{V}{\pi+4}\end{aligned}

Shear Flow Resultant (for the arc): 

\begin{aligned}q_{ arc } &=\frac{V Q_{ arc }}{I}=\frac{V r^{2} t(1+\sin \theta)}{\frac{r^{3} t}{2}(\pi+4)}=\frac{2 V}{r(\pi+4)}(1+\sin \theta) \\F_{ arc } &=\int q_{ arc } d s \\&=\int_{0}^{\pi} \frac{2 V}{r(\pi+4)}(1+\sin \theta) r d \theta \\&=\frac{2 V}{\pi+4} \int_{0}^{\pi}(1+\sin \theta) d \theta=\frac{2 V(\pi+2)}{\pi+4}\end{aligned}

Shear Center: Sum moments about the center of the arc to find

\begin{aligned}V e &=2 F_{\text {upper }} r+F_{\text {arc }} r \\V e &=2\left(\frac{V}{\pi+4}\right) r+\left(\frac{2 V(\pi+2)}{\pi+4}\right) r \\&=\frac{2 V r}{\pi+4}(\pi+3) \\& \therefore e=\left(\frac{\pi+3}{\pi+4}\right) 2 r\end{aligned}

 

Related Answered Questions