Question 9.78: Determine the location of the shear center O of a thin-walle...

Determine the location of the shear center O of a thin-walled beam of uniform thickness having the cross section shown in Figures P9.78.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the shape can be calculated as:

\begin{aligned}\tan \theta &=\frac{3 \text { in. }}{4 \text { in. }}=0.75 \quad \therefore \theta=36.8699^{\circ} \\b &=\frac{0.25  in .}{\sin 36.8699^{\circ}}=0.41667  in. \\h &=3  in . \\|B D| &=\frac{3  in .}{\sin 36.8699^{\circ}}=5  in.\end{aligned}

 

\begin{aligned}I_{N A}=& 2 I_{A B}+2 I_{B D} \\=& 2\left[\frac{(0.25  in .)(2  in .)^{3}}{12}+(0.25  in .)(2  in .)(4  in .)^{2}\right] \\ &+2\left[\frac{(0.41667  in .)(3  in .)^{3}}{3}\right] \\=& 16.3333  in .^{4}+7.5  in .^{4}=23.8333  in .{ }^{4}\end{aligned}

 

Shear Flow in Element AB: Derive an expression for Q for element AB as a function of a temporary variable s which originates at A and extends toward B.

Q_{A B}=\bar{y}^{\prime} A^{\prime}=\left(5 \text { in. }-\frac{s}{2}\right)[(0.25  in .) s]=\left(1.25  in. ^{2}\right) s-(0.125  in .) s^{2}

Express the shear flow q in element AB using Q_{A B}.

q_{A B}=\frac{V Q_{A B}}{I}=\left(\frac{V}{23.8333  in .^{4}}\right)\left[\left(1.25  in .{ }^{2}\right) s-(0.125  in .) s ^{2}\right]

 

Integrate with respect to the temporary variable s to determine the resultant force in element AB.

\begin{aligned}F_{A B} &=\int_{0}^{2 \text { in. }} q_{A B} d s \\&=\int_{0}^{2 \text { in. }}\left(\frac{V}{23.8333  in. ^{4}}\right)\left[\left(1.25  in .{ }^{2}\right) s-(0.125  in .) s^{2}\right] d s \\&=\frac{V}{23.8333  in .^{4}}\left[\frac{1.25  in. ^{2}}{2} s^{2}-\frac{0.125  in .}{3} s^{3}\right]_{0}^{2  in .}=0.0909092 V\end{aligned}

 

Shear Center: Sum moments about D to find

\begin{aligned}&V e=2(4 \text { in. }) F_{A B} \\&e=\frac{2(4 \text { in. })(0.0909092 V)}{V}=0.727 \text { in. }\end{aligned}

 

 

 

Related Answered Questions