Question 4.35: In Example 4.3: (a) If you measured the component of spin an...

In Example 4.3:

(a) If you measured the component of spin angular momentum along the x  direction, at time t, what is the probability that you would get  +\hbar / 2 ?

(b) Same question, but for the y component.

(c) Same, for the z component.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using Eqs. 4.151 and 4.163:

\chi_{+}^{(x)}=\left(\begin{array}{c} 1 / \sqrt{2} \\ 1 / \sqrt{2} \end{array}\right),\left(\text { eigenvalue }+\frac{\hbar}{2}\right) ; \chi_{-}^{(x)}=\left(\begin{array}{c} 1 / \sqrt{2} \\ -1 / \sqrt{2} \end{array}\right),\left(\text { eigenvalue }-\frac{\hbar}{2}\right)          (4.151).

\chi(t)=\left(\begin{array}{c} \cos (\alpha / 2) e^{i \gamma B_{0} t / 2} \\ \sin (\alpha / 2) e^{-i \gamma B_{0} t / 2} \end{array}\right)         (4.163).

c_{+}^{(x)}=\chi_{+}^{(x) \dagger} \chi=\frac{1}{\sqrt{2}}\left(\begin{array}{ll} 1 & 1 \end{array}\right)\left(\begin{array}{c} \cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2} \\ \sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2} \end{array}\right)=\frac{1}{\sqrt{2}}\left[\cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}+\sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}\right] .

P_{+}^{(x)}(t)=\left|c_{+}^{(x)}\right|^{2}=\frac{1}{2}\left[\cos \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}+\sin \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}\right]\left[\cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}+\sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}\right] .

=\frac{1}{2}\left[\cos ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\alpha}{2}+\sin \frac{\alpha}{2} \cos \frac{\alpha}{2}\left(e^{i \gamma B_{0} t}+e^{-i \gamma B_{0} t}\right)\right] .

=\frac{1}{2}\left[1+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \cos \left(\gamma B_{0} t\right)\right]=\frac{1}{2}\left[1+\sin \alpha \cos \left(\gamma B_{0} t\right)\right] .

(b) From Problem 4.32(a):  \chi_{+}^{(y)}=\frac{1}{\sqrt{2}}\left(\begin{array}{l} 1 \\ i \end{array}\right) .

c_{+}^{(y)}=\chi_{+}^{(y) \dagger} \chi=\frac{1} {\sqrt{2}}\left(\begin{array}{ll} 1 & -i \end{array}\right)\left(\begin{array}{c} \cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2} \\ \sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2} \end{array}\right)=\frac{1}{\sqrt{2}}\left[\cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}-i \sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}\right] .

P_{+}^{(y)}(t)=\left|c_{+}^{(y)}\right|^{2}=\frac{1}{2}\left[\cos \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}+i \sin \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}\right]\left[\cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2}-i \sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2}\right] .

=\frac{1}{2}\left[\cos ^{2} \frac{\alpha}{2}+\sin ^{2} \frac{\alpha}{2}+i \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}\left(e^{i \gamma B_{0} t}-e^{-i \gamma B_{0} t}\right)\right] .

=\frac{1}{2}\left[1-2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \sin \left(\gamma B_{0} t\right)\right]=\frac{1}{2}\left[1-\sin \alpha \sin \left(\gamma B_{0} t\right)\right] .

(c)

\chi_{+}^{(z)}=\left(\begin{array}{l} 1 \\ 0 \end{array}\right) ; \quad c_{+}^{(z)}=\left(\begin{array}{ll} 1 & 0 \end{array}\right)\left(\begin{array}{c} \cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2} \\ \sin \frac{\alpha}{2} e^{-i \gamma B_{0} t / 2} \end{array}\right)=\cos \frac{\alpha}{2} e^{i \gamma B_{0} t / 2} ; \quad P_{+}^{(z)}(t)=\left|c_{+}^{(z)}\right|^{2}=\cos ^{2} \frac{\alpha}{2} .

Related Answered Questions