Determine the total current and phase angle in Figure 15—42. Draw a phasor diagram showing the relationship of V_{s}, and I_{tot}.
Determine the total current and phase angle in Figure 15—42. Draw a phasor diagram showing the relationship of V_{s}, and I_{tot}.
The capaeitive reactance is
X_{C}= \frac{1}{2\pi fC} = \frac{1}{2\pi (1.5 \ kHz) (0.022 \ \mu F)}= 4.82 \ k\OmegaThe capaeitive susceptance magnitude is
B_{C}= \frac{1}{X_{C}}= \frac{1}{4.82 \ k\Omega }= 207 \ \mu SThe conductance magnitude is
G= \frac{1}{R}= \frac{1}{2.2 \ k\Omega }= 455 \ \mu SThe total admittance is
Y_{tot}= G + jB_{C} = 455 \mu S + j 207 \mu S
Converting to polar form yields
Y_{tot}= \sqrt{G^{2}+ B^{2}_{C}}\angle \tan ^{-1} \left(\frac{B_{C}}{G} \right)\ \ \ \ \ \ =\sqrt{(455 \ \mu S)^{2}+ (207 \ \mu S)^{2} }\angle \tan ^{-1}\left(\frac{207 \ \mu S}{455 \ \mu S} \right) = 500 \angle 24.5° \mu S
The phase angle is 24.5°.
Use Ohm’s law to determine the total current.
The magnitude of the total current is 5.00 mA, and it leads the applied voltage by 24.5°, as the phasor diagram in Figure 15-43 indicates.