Convert the parallel circuit in Figure 15-49 to a series form.
Convert the parallel circuit in Figure 15-49 to a series form.
First, find the admittance of the parallel circuit as follows:
G=\frac{1}{R}= \frac{1}{18 \ k\Omega }= 55.6 \ \mu SB_{C}=\frac{1}{X_{C}}= \frac{1}{27 \ k\Omega }= 37.0 \ \mu S
Y = G + jB_{C} = 55.6 \mu S + 37.0 \mu S
Converting to polar form yields
Y= \sqrt{G^{2}+ B^{2}_{C}} \angle \tan ^{-1} \left (\frac{B_{C}}{G} \right)\ \ \ \ \ = \sqrt{(55.6 \ \mu S)^{2}+ (37.0 \ \mu S)^{2}} \angle \tan ^{-1} \left(\frac{37.0 \ \mu S}{55.6 \ \mu S} \right)= 66.8 \angle 33.6° \mu S
Then, the total impedance is
Z_{tot}= \frac{1}{Y}=\frac{1}{66.8 \angle 33.6° \mu S}= 15.0 \angle -33.6° \ K\OmegaConverting to rectangular form yields
Z_{tot}= Z\cos \theta – jZ\sin \theta = R_{eq}- jX_{C(eq)}\ \ \ \ \ \ = 15.0 \ k\Omega \cos (-33.6°)- j15.0 \ k\Omega \sin (-33.6°)= 12.5 \ k\Omega – j8.31 \ k\Omega
The equivalent series RC circuit is a 12.5 kΩ resistor in series with a capacitive reactance of 8.31 kΩ. This is shown in Figure 15-50.