Question 13.41: The ideal column has a weight w (force/length) and rests in ...

The ideal column has a weight w (force/length) and rests in the horizontal position when it is subjected to the axial load P. Determine the maximum moment in the column at midspan. E I is constant. Hint: Establish the differential equation for deflection, Eq. 13-1, with the origin at the mid span. The general solution is v=C_{1} \sin k x+C_{2} \cos k x+(w /(2 P)) x^{2}-(w L /(2 P)) x-\left(w E I / P^{2}\right) where k^{2}=P / E I.

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment Functions: FBD ( b ).

\curvearrowleft +\Sigma M_{o}=0 ; \quad w x\left(\frac{x}{2}\right)-M(x)-\left(\frac{w L}{2}\right) x-P v=0 \\M(x)=\frac{w}{2}\left(x^{2}-L x\right)-P v \quad[1]
Differential Equation of The Elastic Curve:

E I \frac{d^{2} v}{d x^{2}}=M(x) \\E I \frac{d^{2} v}{d x^{2}}=\frac{w}{2}\left(x^{2}-L x\right)-P v \frac{d^{2} v}{d x^{2}}+\frac{P}{E I} v=\frac{w}{2 E I}\left(x^{2}-L x\right)

The solution of the above differential equation is of the form

v=C_{1} \sin \left(\sqrt{\frac{P}{E I}} x\right)+C_{2} \cos \left(\sqrt{\frac{P}{E I}} x\right)+\frac{w}{2 P} x^{2}-\frac{w L}{2 P} x-\frac{w E I}{P^{2}}\quad[2]

and

\frac{d v}{d x}=C_{1} \sqrt{\frac{P}{E I}} \cos \left(\sqrt{\frac{P}{E I}} x\right)-C_{2} \sqrt{\frac{P}{E I}} \sin \left(\sqrt{\frac{P}{E I}} x\right)+\frac{w}{P} x-\frac{w L}{2 P}\quad[3]

The integration constants can be determined from the boundary conditions.
Boundary Condition:
At x=0, v=0 . From Eq. [2],

0=C_{2}-\frac{w E I}{P^{2}} \quad C_{2}=\frac{w E I}{P^{2}}

At x=\frac{L}{2}, \frac{d v}{d x}=0 . From Eq. [3],

0=C_{1} \sqrt{\frac{P}{E I}} \cos \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{w E I}{P^{2}} \sqrt{\frac{P}{E I}} \sin \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)+\frac{w}{P}\left(\frac{L}{2}\right)-\frac{w L}{2 P} \\C_{1}=\frac{w E I}{P^{2}} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)

Elastic Curve:

v=\frac{w}{P}\left[\frac{E I}{P} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right) \sin \left(\sqrt{\frac{P}{E I}} x\right)+\frac{E I}{P} \cos \left(\sqrt{\frac{P}{E I}} x\right)+\frac{x^{2}}{2}-\frac{L}{2} x-\frac{E I}{P}\right]

However, v=v_{\max } at x=\frac{L}{2}. Then,

v_{\max } =\frac{w}{P}\left[\frac{E I}{P} \tan \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right) \sin \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)+\frac{E I}{P} \cos \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{L^{2}}{8}-\frac{E I}{P}\right] \\=\frac{w E I}{P^{2}}\left[\sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{P L^{2}}{8 E I}-1\right]

Maximum Moment: The maximum moment occurs at x=\frac{L}{2}. From, Eq.[1],

M_{\max } =\frac{w}{2}\left[\frac{L^{2}}{4}-L\left(\frac{L}{2}\right)\right]-P v_{\max } \\=-\frac{w L^{2}}{8}-P\left\{\frac{w E I}{P^{2}}\left[\sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-\frac{P L^{2}}{8 E I}-1\right]\right\} \\=-\frac{w E I}{P}\left[\sec \left(\sqrt{\frac{P}{E I}} \frac{L}{2}\right)-1\right]
2

Related Answered Questions