Question 13.22: The linkage is made using two A992 steel rods, each having a...

The linkage is made using two A992 steel rods, each having a circular cross section. Determine the diameter of each rod to the nearest \frac{3}{4} in. that will support a load of P=6 kip. Assume that the rods are pin connected at their ends. Use a factor of safety with respect to buckling of 1.8

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
I=\frac{\pi}{4}\left(\frac{d}{2}\right)^{4}=\frac{\pi d^{4}}{64}

Joint B :

\stackrel{+}{\rightarrow} \Sigma F_{x}=0 ; \quad F_{A B} \cos 45^{\circ}-F_{B C} \sin 30^{\circ}=0 \\F_{A B}=0.7071 F_{B C} \quad(1) \\+\uparrow \Sigma F_{y}=0 ; \quad F_{A B} \sin 45^{\circ}+F_{B C} \cos 30^{\circ}-6=0 \quad(2)

Solving Eqs. (1) and (2) yields:

F_{B C}=4.392 kip \quad F_{A B}=3.106 kip

For rod A B :

P_{ cr }=3.106(1.8)=5.591 kip \\K=1.0 \quad L_{A B}=\frac{12(12)}{\cos 45^{\circ}}=203.64 in \\P_{ cr }=\frac{\pi^{2} E I}{(K L)^{2}}\\5.591=\frac{\pi^{2}(29)\left(10^{3}\right)\left(\frac{d_{A B}{4}}{64}\right)}{[(1.0)(203.64)]^{2}} \\d_{A B}=2.015 in . \quad \text { Use } d_{A B}=2 \frac{1}{8} in

Check:

\sigma_{ cr }=\frac{P_{ cr }}{A}=\frac{5.591}{\frac{\pi}{4}\left(2.125^{2}\right)}=1.58 ksi <\sigma_{Y} \quad OK
For rod B C :

P_{ cr }=4.392(1.8)=7.9056 kip \\K=1.0 \quad L_{B C}=\frac{12(12)}{\cos 30^{\circ}}=166.28 in \\P_{ cr }=\frac{\pi^{2} E I}{(K L)^{2}} \\7.9056=\frac{\pi^{2}(29)\left(10^{3}\right)\left(\frac{\pi d_{B C}^{4}}{64}\right)}{[(1.0)(166.28)]^{2}} \\d_{B C}=1.986 in

Use d_{B C}=2 in.
Check:

\sigma_{ cr }=\frac{P_{ cr }}{A}=\frac{7.9056}{\frac{\pi}{4}\left(2^{2}\right)}=2.52 ksi <\sigma_{Y} \quad OK
2

Related Answered Questions