Question 4.52: (a) Construct the spatial wave function (ψ)  for hydrogen in...

(a) Construct the spatial wave function (ψ)  for hydrogen in the state n = 3 , l = 2 , m = 1. Express your answer as a function of r, θ, ϕ, and a (the Bohr radius) only—no other variables (ρ, z, etc.) or functions (ρ, v, etc.), or constants (A, c_0 , etc.), or derivatives, allowed (π is okay, and e, and 2, etc.).

(b) Check that this wave function is properly normalized, by carrying out the appropriate integrals over r, θ, and ϕ.

(c) Find the expectation value of r^s in this state. For what range of s (positive and negative) is the result finite?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Tables 4.3 and 4.7,

Table 4.3: The first few spherical harmonics Y_{\ell}^{m}(\theta, \phi)
Y_{2}^{+2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{\pm 2 i \phi} Y_{0}^{0}=\left(\frac{1}{4 \pi}\right)^{1 / 2}
Y_{3}^{0}=\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta
Y_{3}^{\pm 1}=\mp\left(\frac{21}{64 \pi}\right)^{1 / 2} \sin \theta\left(5 \cos ^{2} \theta-1\right) e^{\pm i \phi} Y_{1}^{\pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{\pm i \phi}
Y_{3}^{\pm 2}=\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{\pm 2 i \phi} Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)
Y_{3}^{+3}=\mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta e^{\pm 3 i \phi} Y_{2}^{\pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{\pm i \phi}

 

Table 4.7: The first few radial wave functions for hydrogen, R_{n \ell}(r)
R_{10}=2 a^{-3 / 2} \exp (-r / a)
R_{20}=\frac{1}{\sqrt{2}} a^{-3 / 2}\left(1-\frac{1}{2} \frac{r}{a}\right) \exp (-r / 2 a) .

R_{21}=\frac{1}{2 \sqrt{6}} a^{-3 / 2}\left(\frac{r}{a}\right) \exp (-r / 2 a) .

R_{30}=\frac{2}{3 \sqrt{3}} a^{-3 / 2}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right) \exp (-r / 3 a) .

R_{31}=\frac{8}{27 \sqrt{6}} a^{-3 / 2}\left(1-\frac{1}{6} \frac{r}{a}\right)\left(\frac{r}{a}\right) \exp (-r / 3 a) .

R_{32}=\frac{4}{81 \sqrt{30}} a^{-3 / 2}\left(\frac{r}{a}\right)^{2} \exp (-r / 3 a) .

R_{40}=\frac{1}{4} a^{-3 / 2}\left(1-\frac{3}{4} \frac{r}{a}+\frac{1}{8}\left(\frac{r}{a}\right)^{2}-\frac{1}{192}\left(\frac{r}{a}\right)^{3}\right) \exp (-r / 4 a) .

R_{41}=\frac{5}{16 \sqrt{15}} a^{-3 / 2}\left(1-\frac{1}{4} \frac{r}{a}+\frac{1}{80}\left(\frac{r}{a}\right)^{2}\right)\left(\frac{r}{a}\right) \exp (-r / 4 a) .

R_{42}=\frac{1}{64 \sqrt{5}} a^{-3 / 2}\left(1-\frac{1}{12} \frac{r}{a}\right)\left(\frac{r}{a}\right)^{2} \exp (-r / 4 a) .

R_{43}=\frac{1}{768 \sqrt{35}} a^{-3 / 2}\left(\frac{r}{a}\right)^{3} \exp (-r / 4 a) .

(a)

\psi_{321}=R_{32} Y_{2}^{1}=\frac{4}{81 \sqrt{30}} \frac{1}{a^{3 / 2}}\left(\frac{r}{a}\right)^{2} e^{-r / 3 a}\left[-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi}\right]= -\frac{1}{\sqrt{\pi}} \frac{1}{81 a^{7 / 2}} r^{2} e^{-r / 3 a} \sin \theta \cos \theta e^{i \phi} .

(b)

\int|\psi|^{2} d^{3} r =\frac{1}{\pi} \frac{1}{(81)^{2} a^{7}} \int\left(r^{4} e^{-2 r / 3 a} \sin ^{2} \theta \cos ^{2} \theta\right) r^{2} \sin \theta d r d \theta d \phi .

=\frac{1}{\pi(81)^{2} a^{7}} 2 \pi \int_{0}^{\infty} r^{6} e^{-2 r / 3 a} d r \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \sin \theta d \theta .

=\left.\frac{2}{(81)^{2} a^{7}}\left[6 !\left(\frac{3 a}{2}\right)^{7}\right]\left[-\frac{\cos ^{3} \theta}{3}+\frac{\cos ^{5} \theta}{5}\right]\right|_{0} ^{\pi} .

=\frac{2}{3^{8} a^{7}} 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \frac{3^{7} a^{7}}{2^{7}}\left[\frac{2}{3}-\frac{2}{5}\right]=\frac{3 \cdot 5}{4} \cdot \frac{4}{15}=1 .

(c)

\left\langle r^{s}\right\rangle=\int_{0}^{\infty} r^{s}\left|R_{32}\right|^{2} r^{2} d r=\left(\frac{4}{81}\right)^{2} \frac{1}{30} \frac{1}{a^{7}} \int_{0}^{\infty} r^{s+6} e^{-2 r / 3 a} d r .

=\frac{8}{15(81)^{2} a^{7}}(s+6) !\left(\frac{3 a}{2}\right)^{s+7}= (s+6) !\left(\frac{3 a}{2}\right)^{s} \frac{1}{720} =\frac{(s+6) !}{6 !}\left(\frac{3 a}{2}\right)^{s} .

Finite for s > -7.

Related Answered Questions