Question 4.53: (a) Construct the wave function for hydrogen in the state n ...

(a) Construct the wave function for hydrogen in the state n =4 , l = 3 , m = 3 . Express your answer as a function of the spherical coordinates r, θ, and ϕ.

(b) Find the expectation value of r in this state. (As always, look up any nontrivial integrals.)

(c) If you could somehow measure the observable L_{x}^{2}+L_{y}^{2} on an atom in this state, what value (or values) could you get, and what is the probability of each?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Tables 4.3 and 4.7,

Table 4.3: The first few spherical harmonics Y_{\ell}^{m}(\theta, \phi)
Y_{2}^{+2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{\pm 2 i \phi} Y_{0}^{0}=\left(\frac{1}{4 \pi}\right)^{1 / 2}
Y_{3}^{0}=\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta
Y_{3}^{\pm 1}=\mp\left(\frac{21}{64 \pi}\right)^{1 / 2} \sin \theta\left(5 \cos ^{2} \theta-1\right) e^{\pm i \phi} Y_{1}^{\pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{\pm i \phi}
Y_{3}^{\pm 2}=\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{\pm 2 i \phi} Y_{2}^{0}=\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)
Y_{3}^{+3}=\mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta e^{\pm 3 i \phi} Y_{2}^{\pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{\pm i \phi}

 

Table 4.7: The first few radial wave functions for hydrogen, R_{n \ell}(r)
R_{10}=2 a^{-3 / 2} \exp (-r / a)
R_{20}=\frac{1}{\sqrt{2}} a^{-3 / 2}\left(1-\frac{1}{2} \frac{r}{a}\right) \exp (-r / 2 a) .

R_{21}=\frac{1}{2 \sqrt{6}} a^{-3 / 2}\left(\frac{r}{a}\right) \exp (-r / 2 a) .

R_{30}=\frac{2}{3 \sqrt{3}} a^{-3 / 2}\left(1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}\right) \exp (-r / 3 a) .

R_{31}=\frac{8}{27 \sqrt{6}} a^{-3 / 2}\left(1-\frac{1}{6} \frac{r}{a}\right)\left(\frac{r}{a}\right) \exp (-r / 3 a) .

R_{32}=\frac{4}{81 \sqrt{30}} a^{-3 / 2}\left(\frac{r}{a}\right)^{2} \exp (-r / 3 a) .

R_{40}=\frac{1}{4} a^{-3 / 2}\left(1-\frac{3}{4} \frac{r}{a}+\frac{1}{8}\left(\frac{r}{a}\right)^{2}-\frac{1}{192}\left(\frac{r}{a}\right)^{3}\right) \exp (-r / 4 a) .

R_{41}=\frac{5}{16 \sqrt{15}} a^{-3 / 2}\left(1-\frac{1}{4} \frac{r}{a}+\frac{1}{80}\left(\frac{r}{a}\right)^{2}\right)\left(\frac{r}{a}\right) \exp (-r / 4 a) .

R_{42}=\frac{1}{64 \sqrt{5}} a^{-3 / 2}\left(1-\frac{1}{12} \frac{r}{a}\right)\left(\frac{r}{a}\right)^{2} \exp (-r / 4 a) .

R_{43}=\frac{1}{768 \sqrt{35}} a^{-3 / 2}\left(\frac{r}{a}\right)^{3} \exp (-r / 4 a) .

(a)

\psi_{433}=R_{43} Y_{3}^{3}=\frac{1}{768 \sqrt{35}} \frac{1}{a^{3 / 2}}\left(\frac{r}{a}\right)^{3} e^{-r / 4 a}\left(-\sqrt{\frac{35}{64 \pi}} \sin ^{3} \theta e^{3 i \phi}\right)= -\frac{1}{6144 \sqrt{\pi} a^{9 / 2}} r^{3} e^{-r / 4 a} \sin ^{3} \theta e^{3 i \phi} .

(b)

\langle r\rangle=\int r|\psi|^{2} d^{3} r =\frac{1}{(6144)^{2} \pi a^{9}} \int r\left(r^{6} e^{-r / 2 a} \sin ^{6} \theta\right) r^{2} \sin \theta d r d \theta d \phi .

=\frac{1}{(6144)^{2} \pi a^{9}} \int_{0}^{\infty} r^{9} e^{-r / 2 a} d r \int_{0}^{\pi} \sin ^{7} \theta d \theta \int_{0}^{2 \pi} d \phi .

=\frac{1}{(6144)^{2} \pi a^{9}}\left[9 !(2 a)^{10}\right]\left(2 \frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7}\right)(2 \pi)=18 a .

(c) Using Eq. 4.133: L_{x}^{2}+L_{y}^{2}=L^{2}-L_{z}^{2}=3(4) \hbar^{2}-(3 \hbar)^{2}= 3 \hbar^{2}.  with probability 1.

H \psi=E \psi, \quad L^{2} \psi=\hbar^{2} \ell(\ell+1) \psi, \quad L_{z} \psi=\hbar m \psi .          (4.133).

Related Answered Questions