Question 14.30: Determine the vertical displacement of end B of the cantilev...

Determine the vertical displacement of end B of the cantilevered 6061-T6 aluminum alloy rectangular beam. Consider both shearing and bending strain energy

 

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Internal Loadings. Referring to the FBD of beam’s right cut segment, Fig. a,

+\uparrow \Sigma F_{y}=0 ; \quad V-150\left(10^{3}\right)=0 \quad V=150\left(10^{3}\right) N \\\curvearrowleft +\Sigma M_{0}=0 ; \quad -M-150\left(10^{3}\right) x=0 \quad M=-150\left(10^{3}\right) x

Shearing Strain Energy. For the rectangular beam, the form factor is f_{s}=\frac{6}{5}.

\left(U_{i}\right)_{v}=\int_{0}^{L} \frac{f_{s} V^{2} d x}{2 G A}=\int_{0}^{1 m } \frac{\frac{6}{5}\left[150\left(10^{3}\right)\right]^{2} d x}{2\left[26\left(10^{9}\right)\right][0.1(0.3)]}=17.31 J

Bending Strain Energy. I=\frac{1}{12}(0.1)\left(0.3^{3}\right)=0.225\left(10^{-3}\right) m ^{4}. We obtain

\left(U_{i}\right)_{b}=\int_{0}^{L} \frac{M^{2} d x}{2 E I}=\int_{0}^{1 m } \frac{\left[-150\left(10^{3}\right) x\right]^{2} d x}{2\left[68.9\left(10^{9}\right)\right]\left[0.225\left(10^{-3}\right)\right]} \\=725.689 \int_{0}^{1 m } x^{2} d x \\=\left.725.689\left(\frac{x^{3}}{3}\right)\right|_{0} ^{1 m } \\=241.90 J

Thus, the strain energy stored in the beam is

U_{i} =\left(U_{i}\right)_{v}+\left(U_{i}\right)_{b} \\=17.31+241.90 \\=259.20 J

External Work. The work done by the external force P=150 kN is

U_{e}=\frac{1}{2} P \Delta=\frac{1}{2}\left[150\left(10^{3}\right)\right] \Delta_{B}=75\left(10^{3}\right) \Delta_{B}

Conservation of Energy.

U_{e} =U_{i} \\75\left(10^{3}\right) \Delta_{B} =259.20 \\\Delta_{B} =3.456\left(10^{-3}\right) m =3.46 mm
2

Related Answered Questions