Find the center frequency of the filter in Figure 18-33. Draw the output response curve showing the minimum and maximum voltages.
Find the center frequency of the filter in Figure 18-33. Draw the output response curve showing the minimum and maximum voltages.
The center frequency is
f_{0}= \frac{\sqrt{1-R^{2}_{W}C/L} }{2\pi \sqrt{LC} }= \frac{\sqrt{1-(8 \ \Omega )^{2}(150 \ pF)/5 \ \mu F } }{2\pi \sqrt{(5 \ \mu H)(150 \ pF)} }= 5.79 \ MHzAt the center (resonant) frequency,
X_{L}=2\pi f_{0}L=2\pi (5.79 \ MHz)(5 \ \mu H)=182 \ \OmegaQ=\frac{X_{L}}{R_{W}}= \frac{182 \ \Omega }{8 \ \Omega } = 22.8
Z_{r}= R_{W}(Q^{2}+1)= 8 \ \Omega (22.8^{2}+ 1)= 4.17 \ k\Omega ( purely resistive)
Next, use the voltage-divider formula to find the minimum output voltage magnitude.
V_{out(min)}= \left(\frac{R_{L}}{R_{L}+ Z_{r}} \right) V_{in}= \left(\frac{560 \ \Omega }{4.73 \ k\Omega } \right)10 \ V =1.18 \ VAt zero frequency, the impedance of the tank circuit is R_{W} because X_{C}= \infty and X_{L}= 0 Ω. Therefore, the maximum output voltage below resonance is
V_{out(max)}= \left(\frac{R_{L}}{R_{L}+ R_{W}} \right) V_{in}= \left(\frac{560 \ \Omega }{568 \ \Omega } \right)10 \ V =9.86 \ VAs the frequency increases much higher than f_{0},X_{C} approaches 0 Ω , and V_{out} approaches V_{in}(10 V). Figure 18-34 shows the response curve.