Question 4.71: In molecular and solid-state applications, one often uses a ...

In molecular and solid-state applications, one often uses a basis of orbitals aligned with the cartesian axes rather than the basis \psi_{n \ell m} used throughout this chapter. For example, the orbitals

\psi_{2 p_{x}}(r, \theta, \phi)=\frac{1}{\sqrt{32 \pi a^{3}}} \frac{x}{a} e^{-r / 2 a} ,

\psi_{2 p_{y}}(r, \theta, \phi)=\frac{1}{\sqrt{32 \pi a^{3}}} \frac{y}{a} e^{-r / 2 a} ,

\psi_{2 p_{z}}(r, \theta, \phi)=\frac{1}{\sqrt{32 \pi a^{3}}} \frac{z}{a} e^{-r / 2 a} .

are a basis for the hydrogen states with n=2 \text { and } \ell=1 .

(a) Show that each of these orbitals can be written as a linear combination of the orbitals \psi_{n \ell m} \text { with } n=2, \ell=1 \text {, and } m=-1,0,1 .

(b) Show that the states \psi_{2} p_{i} are eigenstates of the corresponding component of angular momentum: \hat{L}_{i} What is the eigenvalue in each case.

(c) Make contour plots (as in Figure 4.9) for the three orbitals. In Mathematica use ContourPlot3D.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\psi_{2 p_{x}}=\frac{1}{\sqrt{32 \pi a^{3}}} \frac{r \sin \theta \cos \phi}{a} e^{-r / 2 a}=\frac{1}{\sqrt{24 a^{3}}} \frac{r}{a} e^{-r / 2 a} \sqrt{\frac{3}{4 \pi}} \sin \theta \frac{e^{i \phi}+e^{-i \phi}}{2} .

=R_{21}(r) \frac{-Y_{1}^{1}(\theta, \phi)+Y_{1}^{-1}(\theta, \phi)}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(-\psi_{211}+\psi_{21-1}\right) .

A similar calculation gives

\psi_{2 p_{y}}=\frac{i}{\sqrt{2}}\left(\psi_{211}+\psi_{21-1}\right) .

\psi_{2 p_{z}}=\frac{1}{\sqrt{32 \pi a^{3}}} \frac{r \cos \theta}{a} e^{-r / 2 a}=\frac{1}{\sqrt{24 a^{3}}} \frac{r}{a} e^{-r / 2 a} \sqrt{\frac{3}{4 \pi}} \cos \theta=R_{21}(r) Y_{1}^{0}(\theta, \phi)=\psi_{210} .

(b) \hat{L}_{z} \psi_{2 p_{z}}=\hat{L}_{z} \psi_{210}=0, \text { since } m=0 . \text { By cyclic permutation }(z \rightarrow x \rightarrow y) the same goes for the other two; all three wave functions are eigenstates of the respective components of angular momentum, and the eigenvalue in each case is 0.

(c) Setting a = 1/2, define the three functions:

\operatorname{psiX}\left[x_{-}, y_{-}, z_{-}\right]:=x e^{-\sqrt{x^{\wedge} 2+y^{\wedge 2+z^{\wedge} 2}}} / \sqrt{\pi} .

\operatorname{psiY}\left[x_{-}, y_{-}, z_{-}\right]:=y e^{-\sqrt{x^{\wedge} 2+y^{\wedge 2+z^{\wedge} 2}}} / \sqrt{\pi} .

\operatorname{psiZ}\left[x_{-}, y_{-}, z_{-}\right]:=z e^{-\sqrt{x^{\wedge} 2+y^{\wedge 2+z^{\wedge} 2}}} / \sqrt{\pi} .

\text { ContourPlot3D }\left[(\operatorname{psiX}[x, y, z])^{\wedge} 2==(.03)^{\wedge} 2,\{x,-5,5\},\{y,-5,5\},\{z,-5,5\}\right] .

\text { ContourPlot3D }\left[(\operatorname{psiY}[x, y, z])^{\wedge} 2=(.03)^{\wedge} 2,\{x,-5,5\},\{y,-5,5\},\{z,-5,5\}\right] .

\text { ContourPlot3D }\left[(\operatorname{psiZ}[x, y, z])^{\wedge} 2=(.03)^{\wedge} 2,\{x,-5,5\},\{y,-5,5\},\{z,-5,5\}\right] .

140
141
142

Related Answered Questions