Consider the system of Example 4.6, now with a time-dependent flux Φ(t) through the solenoid. Show that
\Psi(t)=\frac{1}{\sqrt{2 \pi}} e^{i n \phi} e^{-i f(t)} .
with
f(t)=\frac{1}{\hbar} \int_{0}^{t} \frac{\hbar^{2}}{2 m b^{2}}\left(n-\frac{q \Phi\left(t^{\prime}\right)}{2 \pi \hbar}\right)^{2} d t^{\prime}is a solution to the time-dependent Schrödinger equation.