F=I∮dl×B=I(∮dl)×B0+I∮dl×[(r⋅∇0)B0]−I(∮dl)×[(r0⋅∇0)B0]=I∮dl×[(r⋅∇0)B0]
(because ∮dl=0 ). Now
(dl×B0)i=∑j,kϵijkdlj(B0)k, and (r⋅∇0)=∑lrl(∇0)l, so
Fi=I∑j,k,lϵijk[∮rldlj][(∇0)l(B0)k]{ Lemma 1: ∮rldlj=∑mϵljmam( proof below ).}
=I∑j,k,l,mϵijkϵljmam(∇0)l(B0)k{ Lemma 2:∑jϵijkϵljm=δilδkm−δimδkl( proof below ).}
=I∑k,l,m(δilδkm−δimδkl)am(∇0)l(B0)k=I∑k[ak(∇0)i(B0)k−ai(∇0)k(B0)k]
=I[(∇0)i(a⋅B0)−ai(∇0⋅B0)] .
But ∇0⋅B0=0( Eq. 5.50), and m=Ia( Eq. 5.86), so F=∇0(m⋅B0) (the subscript just reminds us to take the derivatives at the point where m is located). qed
∇ · B = 0 (5.50)
m≡I∫da=Ia (5.86)
Proof of Lemma 1:
Eq. 1.108 says ∮(c⋅r)dl=a×c=−c×a . The jth component is ∑p∮cprpdlj=−∑p,mϵjpmcpam . Pick
∮(c⋅r)dl=a×c (1.108)
cp=δpl (i.e. 1 for the lth component, zero for the others). Then ∮rldlj=−∑mϵjlmam=∑mϵljmam . qed
Proof of Lemma 2:
ϵijkϵljm=0 unless ijk and ljm are both permutations of 123. In particular, i must either be l or m, and k must be the other, so
∑jϵijkϵljm=Aδilδkm+Bδimδkl .
To determine the constant A, pick i = l = 1, k = m = 3; the only contribution comes from j = 2:
ϵ123ϵ123=1=Aδ11δ33+Bδ13δ31=A⇒A=1 .
To determine B, pick i = m = 1, k = l = 3:
ϵ123ϵ321=−1=Aδ13δ31+Bδ11δ33=B⇒B=−1 .
So
∑jϵijkϵljm=δilδkm−δimδkl . qed