Question 6.22: In Prob. 6.4, you calculated the force on a dipole by “brute...

In Prob. 6.4, you calculated the force on a dipole by “brute force.” Here’s a more elegant approach. First write B(r) as a Taylor expansion about the center of the loop

B(r)B(r0)+[(rr0)0]B(r0)B ( r ) \cong B \left( r _{0}\right)+\left[\left( r - r _{0}\right) \cdot \nabla_{0}\right] B \left( r _{0}\right) ,

where r0r _{0} is the position of the dipole and 0\nabla _{0} denotes differentiation with respect to r0r _{0}. Put this into the Lorentz force law (Eq. 5.16) to obtain

Fmag=I(dl×B)F _{ mag }=\int I(d l \times B )                        (5.16)

F=Idl×[(r0)B(r0)]F =I \oint d l \times\left[\left( r \cdot \nabla_{0}\right) B \left( r _{0}\right)\right] .

Or, numbering the Cartesian coordinates from 1 to 3:

Fi=Ij,k,l=13ϵijk{rldlj}[0lBk(r0)]F_{i}=I \sum_{j, k, l=1}^{3} \epsilon_{i j k}\left\{\oint r_{l} d l_{j}\right\}\left[\nabla_{0_{l}} B_{k}\left( r _{0}\right)\right] ,

where  ϵijk\epsilon_{i j k} is the Levi-Civita symbol (+1 if i jk = 123, 231, or 312; 1 if i jk  = 132, 213, or 321; 0 otherwise), in terms of which the cross product can be written (A×B)i=j,k=13ϵijkAjBk( A \times B )_{i}=\sum_{j, k=1}^{3} \epsilon_{i j k} A_{j} B_{k} . Use Eq. 1.108 to evaluate the integral. Note that

j=13ϵijkϵljm=δilδkmδimδkl\sum_{j=1}^{3} \epsilon_{i j k} \epsilon_{l j m}=\delta_{i l} \delta_{k m}-\delta_{i m} \delta_{k l} ,

where δij\delta_{i j} is the Kronecker delta (Prob. 3.52). 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
F=Idl×B=I(dl)×B0+Idl×[(r0)B0]I(dl)×[(r00)B0]=Idl×[(r0)B0]F =I \oint d l \times B =I(\oint d l ) \times B _{0}+I \oint d l \times\left[\left( r \cdot \nabla _{0}\right) B _{0}\right]-I(\oint d l ) \times\left[\left( r _{0} \cdot \nabla _{0}\right) B _{0}\right]=I \oint d l \times\left[\left( r \cdot \nabla _{0}\right) B _{0}\right]

(because dl=0\oint d l = 0 ). Now 

(dl×B0)i=j,kϵijkdlj(B0)k, and (r0)=lrl(0)l, so \left(d l \times B _{0}\right)_{i}=\sum_{j, k} \epsilon_{i j k} d l_{j}\left(B_{0}\right)_{k}, \quad \text { and }\left( r \cdot \nabla _{0}\right)=\sum_{l} r_{l}\left( \nabla _{0}\right)_{l}, \text { so }

 

Fi=Ij,k,lϵijk[rldlj][(0)l(B0)k]{ Lemma 1: rldlj=mϵljmam( proof below ).}F_{i}=I \sum_{j, k, l} \epsilon_{i j k}\left[\oint r_{l} d l_{j}\right]\left[\left(\nabla_{0}\right)_{l}\left(B_{0}\right)_{k}\right] \quad\left\{\text { Lemma 1: } \quad \oint r_{l} d l_{j}=\sum_{m} \epsilon_{l j m} a_{m}(\text { proof below }) .\right\}

 

=Ij,k,l,mϵijkϵljmam(0)l(B0)k{ Lemma 2:jϵijkϵljm=δilδkmδimδkl( proof below ).}=I \sum_{j, k, l, m} \epsilon_{i j k} \epsilon_{l j m} a_{m}\left(\nabla_{0}\right)_{l}\left(B_{0}\right)_{k} \quad\left\{\text { Lemma } 2: \quad \sum_{j} \epsilon_{i j k} \epsilon_{l j m}=\delta_{i l} \delta_{k m}-\delta_{i m} \delta_{k l}(\text { proof below }) .\right\}

 

=Ik,l,m(δilδkmδimδkl)am(0)l(B0)k=Ik[ak(0)i(B0)kai(0)k(B0)k]=I \sum_{k, l, m}\left(\delta_{i l} \delta_{k m}-\delta_{i m} \delta_{k l}\right) a_{m}\left(\nabla_{0}\right)_{l}\left(B_{0}\right)_{k}=I \sum_{k}\left[a_{k}\left(\nabla_{0}\right)_{i}\left(B_{0}\right)_{k}-a_{i}\left( \nabla _{0}\right)_{k}\left(B_{0}\right)_{k}\right]

 

=I[(0)i(aB0)ai(0B0)]=I\left[\left( \nabla _{0}\right)_{i}\left( a \cdot B _{0}\right)-a_{i}\left( \nabla _{0} \cdot B _{0}\right)\right] .

But  0B0=0( Eq. 5.50), and m=Ia( Eq. 5.86), so F=0(mB0)\nabla _{0} \cdot B _{0}=0(\text { Eq. } 5.50), \text { and } m =I a (\text { Eq. } 5.86), \text { so } F = \nabla _{0}\left( m \cdot B _{0}\right) (the subscript just reminds us to take the derivatives at the point where m is located). qed

· B = 0                                     (5.50) 

mIda=Iam \equiv I \int d a =I a                             (5.86)

Proof of Lemma 1:

Eq. 1.108 says (cr)dl=a×c=c×a\oint( c \cdot r ) d l = a \times c =- c \times a . The jth component is pcprpdlj=p,mϵjpmcpam\sum_{p} \oint c_{p} r_{p} d l_{j}=-\sum_{p, m} \epsilon_{j p m} c_{p} a_{m} .  Pick

(cr)dl=a×c\oint( c \cdot r ) d l = a \times c                        (1.108)

cp=δplc_{p}=\delta_{p l} (i.e. 1 for the lth component, zero for the others). Then rldlj=mϵjlmam=mϵljmam\oint r_{l} d l_{j}=-\sum_{m} \epsilon_{j l m} a_{m}=\sum_{m} \epsilon_{l j m} a_{m} .  qed

Proof of Lemma 2:

ϵijkϵljm=0 unless ijk and ljm\epsilon_{i j k} \epsilon_{l j m}=0 \text { unless } i j k \text { and } l j m are both permutations of 123. In particular, i must either be l or m, and k must be the other, so

jϵijkϵljm=Aδilδkm+Bδimδkl\sum_{j} \epsilon_{i j k} \epsilon_{l j m}=A \delta_{i l} \delta_{k m}+B \delta_{i m} \delta_{k l} .

To determine the constant A, pick i = l = 1, k = m = 3; the only contribution comes from j = 2:

ϵ123ϵ123=1=Aδ11δ33+Bδ13δ31=AA=1\epsilon_{123} \epsilon_{123}=1=A \delta_{11} \delta_{33}+B \delta_{13} \delta_{31}=A \Rightarrow A=1 .

To determine B, pick i = m = 1, k = l = 3:

ϵ123ϵ321=1=Aδ13δ31+Bδ11δ33=BB=1\epsilon_{123} \epsilon_{321}=-1=A \delta_{13} \delta_{31}+B \delta_{11} \delta_{33}=B \Rightarrow B=-1 .

So

jϵijkϵljm=δilδkmδimδkl\sum_{j} \epsilon_{i j k} \epsilon_{l j m}=\delta_{i l} \delta_{k m}-\delta_{i m} \delta_{k l} qed

Related Answered Questions