Question 6.23: A familiar toy consists of donut-shaped permanent magnets (m...

A familiar toy consists of donut-shaped permanent magnets (magnetization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets as dipoles, with mass m_{d} and dipole moment m.

(a) If you put two back-to-back magnets on the rod, the upper one will “float”—the magnetic force upward balancing the gravitational force downward. At what height (z) does it float?

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two heights? (Determine the actual number, to three significant digits.) [Answer: \text { (a) }\left[3 \mu_{0} m^{2} / 2 \pi m_{d} g\right]^{1 / 4} ; (b) 0.8501] 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  B _{1}=\frac{\mu_{0}}{4 \pi} \frac{2 m}{z^{3}} \hat{ z }(\text { Eq. } 5.88, \text { with } \theta=0) . \text { So } m _{2} \cdot B _{1}=-\frac{\mu_{0}}{2 \pi} \frac{m^{2}}{z^{3}} . F =\nabla( m \cdot B )(\text { Eq. } 6.3) \Rightarrow F =\frac{\partial}{\partial z}\left[-\frac{\mu_{0}}{2 \pi} \frac{m^{2}}{z^{3}}\right] \hat{ z }=\frac{3 \mu_{0} m^{2}}{2 \pi z^{4}} \hat{ z } . This is the magnetic force upward (on the upper magnet); it balances the gravitational force downward  \left(-m_{d} g \hat{ z }\right) :

B _{\text {dip }}( r )=\nabla \times A =\frac{\mu_{0} m}{4 \pi r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })                  (5.88)

\frac{3 \mu_{0} m^{2}}{2 \pi z^{4}}-m_{d} g=0 \Rightarrow z=\left[\frac{3 \mu_{0} m^{2}}{2 \pi m_{d} g}\right]^{1 / 4} .

(b) The middle magnet is repelled upward by lower magnet and downward by upper magnet:

\frac{3 \mu_{0} m^{2}}{2 \pi x^{4}}-\frac{3 \mu_{0} m^{2}}{2 \pi y^{4}}-m_{d} g=0 .

The top magnet is repelled upward by middle magnet, and attracted downward by lower magnet:

\frac{3 \mu_{0} m^{2}}{2 \pi y^{4}}-\frac{3 \mu_{0} m^{2}}{2 \pi(x+y)^{4}}-m_{d} g=0 .

Subtracting:  \frac{3 \mu_{0} m^{2}}{2 \pi}\left[\frac{1}{x^{4}}-\frac{1}{y^{4}}-\frac{1}{y^{4}}+\frac{1}{(x+y)^{4}}\right]-m_{d} g+m_{d} g=0, \text { or } \frac{1}{x^{4}}-\frac{2}{y^{4}}+\frac{1}{(x+y)^{4}}=0, \text { so: } 2=\frac{1}{(x / y)^{4}}+\frac{1}{(x / y+1)^{4}} .

Let \alpha \equiv x / y ; \text { then } 2=\frac{1}{\alpha^{4}}+\frac{1}{(\alpha+1)^{4}} . Mathematica gives the numerical solution \alpha=x / y=0.850115 \ldots

Related Answered Questions