Question 5.21: The density of copper is 8.96 g/cm^3, and its atomic weight ...

The density of copper is 8.96 g/cm³, and its atomic weight is 63.5 g/mole.

(a) Calculate the Fermi energy for copper (Equation 5.54). Assume d = 1, and give your answer in electron volts.

E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}           (5.54).

(b) What is the corresponding electron velocity? Hint: Set E_F = (1/2) mv^2 .

Is it safe to assume the electrons in copper are nonrelativistic?

(c) At what temperature would the characteristic thermal energy \left(k_{B} T\right. , where k_B is the Boltzmann constant and T is the Kelvin temperature) equal the Fermi energy, for copper? Comment: This is called the Fermi temperature, T_F . As long as the actual temperature is substantially below the Fermi temperature, the material can be regarded as “cold,” with most of the electrons in the lowest accessible state. Since the melting point of copper is 1356 K, solid copper is always cold.

(d) Calculate the degeneracy pressure (Equation 5.57) of copper, in the electron gas model.

P=\frac{2}{3} \frac{E_{ tot }}{V}=\frac{2}{3} \frac{\hbar^{2} k_{F}^{5}}{10 \pi^{2} m}=\frac{\left(3 \pi^{2}\right)^{2 / 3} \hbar^{2}}{5 m} \rho^{5 / 3}         (5.57).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3} . \quad \rho=\frac{N q}{V}=\frac{N}{V}=\frac{\text { atoms }}{\text { mole }} \times \frac{\text { moles }}{\text { gm }} \times \frac{\operatorname{gm}}{\text { volume }}=\frac{N_{A}}{M} \cdot d, where N_A is Avogadro’s number \left(6.02 \times 10^{23}\right), M=\text { atomic mass }=63.5 gm / mol , d=\text { density }=8.96 gm / cm ^{3} .

\rho=\frac{\left(6.02 \times 10^{23}\right)\left(8.96 gm / cm ^{3}\right)}{(63.5 gm )}=8.49 \times 10^{22} / cm ^{3}=8.49 \times 10^{28} / m ^{3} .

E_{F}=\frac{\left(1.055 \times 10^{-34} J \cdot s \right)\left(6.58 \times 10^{-16} eV \cdot s \right)}{(2)\left(9.109 \times 10^{-31} kg \right)}\left(3 \pi^{2} 8.49 \times 10^{28} / m ^{3}\right)^{2 / 3}=7.04 eV .

(b)

7.04 eV =\frac{1}{2}\left(0.511 \times 10^{6} eV / c^{2}\right) v^{2} \Rightarrow \frac{v^{2}}{c^{2}}=\frac{14.08}{.511 \times 10^{6}}=2.76 \times 10^{-5} \Rightarrow \frac{v}{c}=5.25 \times 10^{-3} ,

so it’s nonrelativistic. v=\left(5.25 \times 10^{-3}\right) \times\left(3 \times 10^{8}\right)=1.57 \times 10^{6} m / s .

(c)

T=\frac{7.04 eV }{8.62 \times 10^{-5} eV / K }=8.17 \times 10^{4} K .

(d)

P=\frac{\left(3 \pi^{2}\right)^{2 / 3} \hbar^{2}}{5 m} \rho^{5 / 3}=\frac{\left(3 \pi^{2}\right)^{2 / 3}\left(1.055 \times 10^{-34}\right)^{2}}{5\left(9.109 \times 10^{-31}\right)}\left(8.49 \times 10^{28}\right)^{5 / 3} N / m ^{2}=3.84 \times 10^{10} N / m ^{2} .

Related Answered Questions