Question 1.4.15: The rods AD and CE shown in Fig. 4–17a each have a diameter ...

The rods AD and CE shown in Fig. 4–17a each have a diameter of 10 mm. The second area moment of beam ABC is I = 62.5\left(10^3\right) \ mm^4 . The modulus of elasticity of the material used for the rods and beam is E = 200 GPa .

The threads at the ends of the rods are single-threaded with a pitch of 1.5 mm. The nuts are first snugly fit with bar ABC horizontal. Next the nut at A is tightened one full turn. Determine the resulting tension  in each rod and the deflections of points A and C.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

There is a lot going on in this problem; a rod shortens, the rods stretch in tension, and the beam bends. Let’s try the procedure!
1-The free-body diagram of the beam is shown in Fig. 4–17b. Summing forces, and moments about B, gives

F_B-F_A-F_C=0    (1)

 

4F_A-3F_C=0      (2)

 

2-Using singularity functions, we find the moment equation for the beam is

M=-F_Ax+F_B\left\langle x-0.2\right\rangle ^1

 

where x is in meters. Integration yields

EI\frac{dy}{dx} =-\frac{F_A}{2}x^2+\frac{F_B}{2}\left\langle x-0.2\right\rangle ^2 +C_1

 

EIy =-\frac{F_A}{6}x^3+\frac{F_B}{6}\left\langle x-0.2\right\rangle ^3 +C_1x+C_2x    (3)

 

The term  EI = 200 \left(10^9 \right) 62.5 \left(10^{−9}\right) = 1.25 \left(10^4 \right) N·m^2 .

 

3 -The upward deflection of point A is

\left({Fl}/{AE}\right) _{AD}-Np , where the first term is the elastic stretch of AD, N is the number of turns of the nut, and p is the pitch of the thread. Thus, the deflection of A in meters is

 

y_A = \frac{F_A\left (0.6\right) } {\frac{\pi } {4}\left(0.010\right)^2 \left(200\right) \left(10^9\right) }  – \left(1\right)  \left(0.0015\right) \\= 3.8197 \left(10^{-8}\right)  F_A-1.5 \left(10^{-3}\right)       (4)

 

The upward deflection of point C is \left({Fl}/{AE}\right) _{CE} , or

y_C=\frac{F_C\left(0.8\right) }{\frac{\pi }{4}\left(0.010\right)^2\left(200\right)\left(10^9\right) }=5.093 \left(10^{-8}\right) F_C    (5)

 

Equations (4) and (5) will now serve as the boundary conditions for Eq. (3). At
x = 0 \ , \ y = y_A. Substituting Eq. (4) into (3) with x = 0 \ and \ EI = 1.25 \left(10^4\right) , noting that the singularity function is zero for x = 0 , gives

-4.7746\left(10^{-4}\right) F_A+C_2=-18.75     (6)

At x = 0.2 \ m, \ y = 0, and Eq. (3) yields

-1.3333\left(10^{-3}\right)F_A+0.2C_1+C_2=0      (7)

 

At x = 0.35 \ m, \ y = y_C. Substituting Eq. (5) into (3) with x = 0.35 \ m \ and \ EI =1.25\left(10^4\right) gives

−7.1458 \left(10^{−3}\right) F_A + 5.625 \left(10^{−4}\right) F_B − 6.3662 \left(10^{−4}\right) F_C + 0.35 C_1 + C2 = 0      (8)

 

Equations (1), (2), (6), (7), and (8) are five equations in F_A\ , \ F_B , \ F_C, \ C_1, \ and \ C_2 . Written in matrix form, they are

\left [ \begin{matrix} -1 & 1 & -1 & 0 & 0 \\ 4 & 0 & -3 & 0 & 0 \\ -4.7746\left(10^{-4}\right) & 0 & 0 & 0 & 1 \\ -1.3333\left(10^{-3}\right) & 0 & 0 & 0.2 & 1 \\ -7.1458\left(10^{-3}\right) & 5.625\left(10^{-4}\right) & -6.3662\left(10^{-4}\right) & 0.35 & 1 \end{matrix} \right ] \left [ \begin{matrix} F_A \\ F_B \\ F_C \\ C_1 \\ C_2 \end{matrix} \right ] =\left [ \begin{matrix} 0 \\ 0 \\ -18.75 \\ 0 \\ 0 \end{matrix} \right ]

 

Solving these equations yields

 

F_A=2988 \ N          F_B=6971 \ N         F_C=3983 \ N

C_1=06.54 \ N.m^2        C_2=-17.324 \ N.m^3

 

Equation (3) can be reduced to

y=-\left(39.84 x^3-92.95\left\langle x-0.2\right\rangle^3-8.523x+1.386 \right) \left(10^{-3}\right)

at x=0 \ , \ y=y_A=-1.386\left(10^{-3}\right) \ m =-1.386 \ mm

at x=0.35 \ m, \ y=y_C=-\left[39.84 \left(0.35\right)^3 – 92.95 \left(0.35-0.2\right)^3-8.523\left(0.35\right)+1.386\right]\left(10^{-3}\right) =0.203\left(10^{-3}\right) \ m=0.203 \ mm

4.17 b

Related Answered Questions

(a) For round columns, Eq. (4–46) yields   [l...