Question 5.37: An important quantity in many calculations is the density of...

An important quantity in many calculations is the density of states G(E):

G(E) dE ≡ number of states with energy between E and E+d E.

For a one-dimensional band structure,

G(E) d E=2\left(\frac{d q}{2 \pi / N a}\right) ,

where dq/(2 π/Na) counts the number of states in the range dq (see Equation 5.63), and the factor of 2 accounts for the fact that states with q and -q have the same energy. Therefore

q=\frac{2 \pi n}{N a}, \quad(n=0, \pm 1, \pm 2, \ldots)               (5.63).

\frac{1}{N a} G(E)=\frac{1}{\pi} \frac{1}{|d E / d q|} .

(a) Show that for α = 0 (a free particle) the density of states is given by

\frac{1}{N a} G_{\text {free }}(E)=\frac{1}{\pi \hbar} \sqrt{\frac{m}{2 E}} .

(b) Find the density of states for α ≠ 0 by differentiating Equation 5.71 with respect to q to determine dE/dq. Note: Your answer should be written as a function of E only (well, and α, m, \hbar , a, and N) and must not contain q (use k as a shorthand for \sqrt{2 m E} / \hbar if you like).

\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)          (5.71).

(c) Make a single plot showing G(E) / Na for both α = 0 and α =1 (in units where m=\hbar=a=1 ). Comment: The divergences at the band edges are examples of van Hove singularities.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Equation 5.71, \cos (q a)=\cos (k a) \Rightarrow q=\pm k=\pm \frac{\sqrt{2 m E}}{\hbar} ; \quad E=\frac{\hbar^{2} q^{2}}{2 m} \Rightarrow \frac{d E}{d q}=\frac{\hbar^{2} q}{m} .

\cos (q a)=\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)          (5.71).

\frac{1}{N a} G_{\text {free }}(E)=\frac{1}{\pi} \frac{m}{\hbar^{2}|q|}=\frac{m \hbar}{\pi \hbar^{2} \sqrt{2 m E}}=\frac{1}{\pi \hbar} \sqrt{\frac{m}{2 E}} .

(b) -a \sin (q a)=\left\{-a \sin (k a)+\frac{m \alpha}{\hbar^{2}}\left[-\frac{1}{k^{2}} \sin (k a)+\frac{a}{k} \cos (k a)\right]\right\} \frac{d k}{d q} , Equation (5.65): \frac{d k}{d q}=\frac{\sqrt{2 m}}{2 \hbar \sqrt{E}} \frac{d E}{d q} .

k \equiv \frac{\sqrt{2 m E}}{\hbar}            (5.65).

\sin (q a)=\left\{\sin (k a)+\frac{m \alpha}{\hbar^{2} k}\left[\frac{1}{k a} \sin (k a)-\cos (k a)\right]\right\} \frac{m}{\hbar^{2} k} \frac{d E}{d q} .

\frac{d E}{d q}=\frac{\sin (q a)}{\sin (k a)+\frac{m \alpha}{\hbar^{2} k}\left(\frac{1}{k a} \sin (k a)-\cos (k a)\right)} \frac{\hbar^{2} k}{m} .

\sin (q a)=\sqrt{1-\cos ^{2}(q a)}=\sqrt{1-\left[\cos (k a)+\frac{m \alpha}{\hbar^{2} k} \sin (k a)\right]^{2}} .

=\sqrt{1-\cos ^{2}(k a)-\frac{2 m \alpha}{\hbar^{2} k} \cos (k a) \sin (k a)-\left(\frac{m \alpha}{\hbar^{2} k}\right)^{2} \sin ^{2}(k a)} .

=\sin (k a) \sqrt{1-\frac{2 m \alpha}{\hbar^{2} k} \cot (k a)-\left(\frac{m \alpha}{\hbar^{2} k}\right)^{2}} .

\frac{1}{N a} G(E)=\frac{1}{\pi}\left(\frac{m}{\hbar^{2} k}\right) \frac{\left|\sin (k a)+\frac{m \alpha}{\hbar^{2} k}\left(\frac{1}{k a} \sin (k a)-\cos (k a)\right)\right|}{\sin (k a) \sqrt{1-\frac{2 m \alpha}{\hbar^{2} k} \cot (k a)-\left(\frac{m \alpha}{\hbar^{2} k}\right)^{2}}} .

= \frac{m}{\pi \hbar^{2} k} \frac{\left|1+\frac{m \alpha}{\hbar^{2} k}\left[\frac{1}{k a}-\cot (k a)\right]\right|}{\sqrt{1-\frac{2 m \alpha}{\hbar^{2} k} \cot (k a)-\left(\frac{m \alpha}{\hbar^{2} k}\right)^{2}}} .

(c) With m=\hbar=a=1 , the expressions in (a) and (b) reduce to

\alpha=0: \quad \frac{1}{\pi \sqrt{2 E}} ;      \alpha=1: \frac{1}{\pi \sqrt{2 E}}\left[\frac{1+\frac{1}{2 E}-\frac{1}{\sqrt{2 E}} \cot (\sqrt{2 E})}{\sqrt{1-\frac{1}{2 E}-\frac{2}{\sqrt{2 E}} \cot (\sqrt{2 E})}}\right] .

In the graph, the lower curve is for α = 0, the upper one (with the breaks) is for α = 1.

\operatorname{Plot}\left[\frac{1}{\pi \sqrt{2 x }},\{ x , 0,50\}, \text { PlotRange } \rightarrow\{0, .5\}\right] .

\operatorname{Plot}\left[\frac{1}{\pi \sqrt{2 x}}\left(1+\frac{1}{2 x}-\frac{1}{\sqrt{2 x}} \operatorname{Cot}[\sqrt{2 x}]\right) / \sqrt{1-\frac{1}{2 x}-\frac{2}{\sqrt{2 x}} \cot [\sqrt{2 x}]}\right. ,

\{ x , 0,50\}, \text { PlotRange } \rightarrow\{0, .5\}] .

Show[%3, %4].

170

Related Answered Questions