Question 5.39: In Section 5.3.1 we put the electrons in a box with impenetr...

In Section 5.3.1 we put the electrons in a box with impenetrable walls. The same results can be obtained using periodic boundary conditions. We still imagine the electrons to be confined to a box with sides of length l_x , l_y ,and l_z but instead of requiring the wave function to vanish on each wall, we require it to take the same value on opposite walls:

\psi(x, y, z)=\psi\left(x+l_{x}, y, z\right)=\psi\left(x, y+l_{y}, z\right)=\psi\left(x, y, z+l_{z}\right) .

In this case we can represent the wave functions as traveling waves,

\psi=\frac{1}{\sqrt{l_{x} l_{y} l_{z}}} e^{i k \cdot r }=\frac{1}{\sqrt{l_{x} l_{y} l_{z}}} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} .

rather than as standing waves (Equation 5.49). Periodic boundary conditions— while certainly not physical—are often easier to work with (to describe something like electrical current a basis of traveling waves is more natural than a basis of standing waves) and if you are computing bulk properties of a material it shouldn’t matter which you use.

\psi_{n_{x} n_{y} n_{z}}=\sqrt{\frac{8}{l_{x} l_{y} l_{z}}} \sin \left(\frac{n_{x} \pi}{l_{x}} x\right) \sin \left(\frac{n_{y} \pi}{l_{y}} y\right) \sin \left(\frac{n_{z} \pi}{l_{z}} z\right)                (5.49).

(a) Show that with periodic boundary conditions the wave vector satisfies

k_{x} l_{x}=2 n_{x} \pi, \quad k_{y} l_{y}=2 n_{y} \pi, \quad k_{z} l_{z}=2 n_{z} \pi .

where each n is an integer (not necessarily positive). What is the k-space volume occupied by each block on the grid (corresponding to Equation 5.51)?

\frac{\pi^{3}}{l_{x} l_{y} l_{z}}=\frac{\pi^{3}}{V}             (5.51).

(b) Compute k_{F}, E_{F}, \text { and } E_{\text {tot }} for the free electron gas with periodic boundary conditions. What compensates for the larger volume occupied
by each k-space block (part (a)) to make these all come out the same as in Section 5.3.1?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

\psi\left(x+l_{x}, y, z\right)=\frac{1}{\sqrt{l_{x} l_{y} l_{z}}} e^{i\left[k_{x}\left(x+l_{x}\right)+k_{y} y+k_{z} z\right]}=\psi(x, y, z)=\frac{1}{\sqrt{l_{x} l_{y} l_{z}}} e^{i\left(k_{x} x+k_{y} y+k_{z} z\right)} \Rightarrow e^{i k_{x} l_{x}}=1 ,

\text { so } k_{x} l_{x}=0, \pm 2 \pi, \pm 4 \pi, \ldots=2 n_{x} \pi ; \text { likewise } k_{y} l_{y}=2 n_{y} \pi, k_{z} l_{z}=2 n_{z} \pi .

\Delta k_{x} \Delta k_{y} \Delta k_{z}=\frac{2 \pi}{l_{x}} \frac{2 \pi}{l_{y}} \frac{2 \pi}{l_{z}}=\frac{8 \pi^{3}}{V} .

(b) Because n_{x}, n_{y}, \text { and } n_{z} run negative as well as positive, we want the whole sphere, not just one octant:

\frac{4}{3} \pi k_{F}^{3}=\frac{8 \pi^{3}}{V} \frac{N d}{2} \Rightarrow k_{F}=\left(\frac{3 \pi^{2} N d}{V}\right)^{1 / 3}=\left(3 \rho \pi^{2}\right)^{1 / 3} .

where \rho \equiv N d / V (same as Equation 5.52).

k_{F}=\left(3 \rho \pi^{2}\right)^{1 / 3}              (5.52).

E_{F}=\frac{\hbar^{2}}{2 m} k_{F}^{2}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}   (same as Equation 5.54).

E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}      (5.54).

A shell of thickness dk contains a volume 4 \pi k^{2} d k of k-space, so the number of electron states in the shell is 2 \frac{4 \pi k^{2} d k}{8 \pi^{3} / V}=\frac{V}{\pi^{2}} k^{2} d k   (same as in the text), so E_{\text {tot }}=\frac{\hbar^{2}\left(3 \pi^{2} N d\right)^{5 / 3}}{10 \pi^{2} m} V^{-2 / 3}   (same as Equation 5.56).

E_{ tot }=\frac{\hbar^{2} V}{2 \pi^{2} m} \int_{0}^{k_{F}} k^{4} d k=\frac{\hbar^{2} k_{F}^{5} V}{10 \pi^{2} m}=\frac{\hbar^{2}\left(3 \pi^{2} N d\right)^{5 / 3}}{10 \pi^{2} m} V^{-2 / 3}            (5.56).

Each state occupies an 8-times larger volume of k-space (because of the 2’s in part (a)), but the k-space itself is 8 times larger (because negative n’s are allowed, so with periodic boundary conditions all 8 octants are accessible).

Related Answered Questions