Question 13.82: The potential function associated with a force P in space is...

The potential function associated with a force P in space is known to be V\left( x,y,z \right) =-{ \left( { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } \right) }^{ 1/2 } (a) Determine the x, y, and z components of P. (b) Calculate the work done by P from O to D by integrating along the path OABD, and show that it is equal to the negative of the change in potential from O to D.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) P_{x}=-\frac{\partial V}{\partial x}=-\frac{\partial\left[-\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right]}{\partial x}=x\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}\blacktriangleleft

P_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial\left[-\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right]}{\partial y}=y\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}\blacktriangleleft

P_{z}=-\frac{\partial V}{\partial z}=-\frac{\partial\left[-\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right]}{\partial z}=z\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}\blacktriangleleft

(b) U_{O A B D}=U_{O A}+U_{A B}+U_{B D}        

              O-A: P_{y} and P_{x} are perpendicular to O – A and do no work.      

Also, on O – A \quad x=y=0 \quad \text { and } \quad P_{z}=1   

Thus, \quad U_{O-A}=\int_{0}^{a} P_{z} d z=\int_{0}^{a} d z=a

A-B: P_{z} and P_{y} are perpendicular to A – B and do no work.

Also, on A – B \quad y=0, \quad z=a \quad \text { and } \quad P_{x}=\frac{x}{\left(x^{2}+a^{2}\right)^{1 / 2}}

Thus,

\begin{aligned}U_{A-B} & =\int_{0}^{a} \frac{x d x}{\left(x^{2}+a^{2}\right)^{1 / 2}} \\& =a(\sqrt{2}-1)\end{aligned}

B-D: P_{x} and P_{z} are perpendicular to B – D and do no work.

On  B – D, 

\begin{aligned}k & =a \\z & =a \\P_{y} & =\frac{y}{\left(y^{2}+2 a^{2}\right)^{1 / 2}}\end{aligned}

Thus,

\begin{aligned}U_{B D} & =\int_{0}^{a} \frac{y}{\left(y^{2}+2 a^{2}\right)^{1 / 2}} d y=\left.\left(y^{2}+2 a^{2}\right)^{1 / 2}\right|_{0} ^{a} \\U_{B D} & =\left(a^{2}+2 a^{2}\right)^{1 / 2}-\left(2 a^{2}\right)^{1 / 2}=a(\sqrt{3}-\sqrt{2}) \\U_{O A B D} & =U_{O-A}+U_{A-B}+U_{B-D} \\& =a+a(\sqrt{2}-1)+a(\sqrt{3}-\sqrt{2})\quad\quad U_{O A B D}=a \sqrt{3}\blacktriangleleft \\\Delta V_{O D} & =V(a, a, a)-V(0,0,0) \\& =-\left(a^{2}+a^{2}+a^{2}\right)^{1 / 2}-0 \quad\quad \Delta V_{O D}=-a\sqrt{3}\blacktriangleleft\end{aligned}

Thus,\quad U_{O A B D}=-\Delta V_{O D}

Related Answered Questions