Question 7.51: An infinite wire carrying a constant current I in the zˆ dir...

An infinite wire carrying a constant current I in the \hat{ z } direction is moving in the y direction at a constant speed υ. Find the electric field, in the quasistatic approximation, at the instant the wire coincides with the z axis (Fig. 7.54). \left[\text { Answer: }-\left(\mu_{0} I v / 2 \pi s\right) \sin \phi \hat{ z }\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In the quasistatic approximation the magnetic field of the wire is  B =\left(\mu_{0} I / 2 \pi s\right) \hat{ \phi } , or, in Cartesian coordinates,

B =\frac{\mu_{0} I}{2 \pi s}(-\sin \phi \hat{ x }+\cos \phi \hat{ y })=\frac{\mu_{0} I}{2 \pi s}\left(-\frac{y}{s} \hat{ x }+\frac{x}{s} \hat{ y }\right)=\frac{\mu_{0} I}{2 \pi} \frac{(-y \hat{ x }+x \hat{ y })}{x^{2}+y^{2}} ,

where x and y are measured from the wire. To convert to the stationary coordinates in the diagram, y \rightarrow y-v t :

B =\frac{\mu_{0} I}{2 \pi} \frac{[-(y-v t) \hat{ x }+x \hat{ y }]}{x^{2}+(y-v t)^{2}} .

Faraday’s law says

\nabla \times E =-\frac{\partial B }{\partial t}=-\frac{\mu_{0} I}{2 \pi}\left\{\frac{v \hat{ x }}{x^{2}+(y-v t)^{2}}-\frac{[-(y-v t) \hat{ x }+x \hat{ y }]}{\left[x^{2}+(y-v t)^{2}\right]^{2}}(-2 v)(y-v t)\right\} .

At t = 0, then,

\nabla \times E =-\frac{\mu_{0} I v}{2 \pi}\left\{\frac{\hat{ x }}{x^{2}+y^{2}}+2 \frac{\left[-y^{2} \hat{ x }+x y \hat{ y }\right]}{\left[x^{2}+y^{2}\right]^{2}}\right\}=-\frac{\mu_{0} I v}{2 \pi}\left\{\frac{\left.\left(x^{2}-y^{2}\right) \hat{ x }+2 x y \hat{ y }\right]}{\left[x^{2}+y^{2}\right]^{2}}\right\}=-\frac{\mu_{0} I v}{2 \pi s^{2}}(\cos \phi \hat{ s }+\sin \phi \hat{ \phi }) .

Our problem is to find a vector function of s and \phi (it obviously doesn’t depend on z) whose divergence is zero, whose curl is as given above, that goes to zero at large s:

E (s, \phi)=E_{s}(s, \phi) \hat{ s }+E_{\phi}(s, \phi) \hat{ \phi }+E_{z}(s, \phi) \hat{ z } ,

with

\nabla \cdot E =\frac{1}{s} \frac{\partial}{\partial s}\left(s E_{s}\right)+\frac{1}{s} \frac{\partial E_{\phi}}{\partial \phi}=0 ,

(\nabla \times E )_{s}=\frac{1}{s} \frac{\partial E_{z}}{\partial \phi}=-\frac{\mu_{0} I v}{2 \pi s^{2}} \cos \phi

(\nabla \times E )_{\phi}=-\frac{\partial E_{z}}{\partial s}=-\frac{\mu_{0} I v}{2 \pi s^{2}} \sin \phi ,

(\nabla \times E )_{z}=\frac{1}{s}\left[\frac{\partial}{\partial s}\left(s E_{\phi}\right)-\frac{\partial E_{s}}{\partial \phi}\right]=0 .

The first and last of these are satisfied if  E_{s}=E_{\phi}=0 , the middle two are satisfied by  E_{z}=-\frac{\mu_{0} I v}{2 \pi s} \sin \phi .

vidently E =-\frac{\mu_{0} I v}{2 \pi s} \sin \phi \hat{ z } . The electric and magnetic fields ride along with the wire.

Related Answered Questions