Question 7.56: (a) Use the Neumann formula (Eq. 7.23) to calculate the mutu...

(a) Use the Neumann formula (Eq. 7.23) to calculate the mutual inductance of the configuration in Fig. 7.37, assuming a is very small (a ≪ b, a ≪ z). Compare your answer to Prob. 7.22.

M_{21}=\frac{\mu_{0}}{4 \pi} \oint \oint \frac{d l _{1} \cdot d l _{2}}{ᴫ}                                  (7.23)

(b) For the general case (not assuming a is small), show that

M=\frac{\mu_{0} \pi \beta}{2} \sqrt{a b \beta}\left(1+\frac{15}{8} \beta^{2}+\ldots\right) ,

where

\beta \equiv \frac{a b}{z^{2}+a^{2}+b^{2}} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A point on the upper loop: r _{2}=\left(a \cos \phi_{2}, a \sin \phi_{2}, z\right) \text {; a point on the lower loop: } r _{1}=\left(b \cos \phi_{1}, b \sin \phi_{1}, 0\right) .

ᴫ^{2}=\left( r _{2}- r _{1}\right)^{2}=\left(a \cos \phi_{2}-b \cos \phi_{1}\right)^{2}+\left(a \sin \phi_{2}-b \sin \phi_{1}\right)^{2}+z^{2} =a^{2} \cos ^{2} \phi_{2}-2 a b \cos \phi_{2} \cos \phi_{1}+b^{2} \cos ^{2} \phi_{1}+a^{2} \sin ^{2} \phi_{2}-2 a b \sin \phi_{1} \sin \phi_{2}+b^{2} \sin ^{2} \phi_{1}+z^{2} =a^{2}+b^{2}+z^{2}-2 a b\left(\cos \phi_{2} \cos \phi_{1}+\sin \phi_{2} \sin \phi_{1}\right)=a^{2}+b^{2}+z^{2}-2 a b \cos \left(\phi_{2}-\phi_{1}\right)

=\left(a^{2}+b^{2}+z^{2}\right)\left[1-2 \beta \cos \left(\phi_{2}-\phi_{1}\right)\right]=\frac{a b}{\beta}\left[1-2 \beta \cos \left(\phi_{2}-\phi_{1}\right)\right] .

d l_{1}=b d \phi_{1} \hat{ \phi }_{1}=b d \phi_{1}\left[-\sin \phi_{1} \hat{ x }+\cos \phi_{1} \hat{ y }\right] ; d l_{2}=a d \phi_{2} \hat{ \phi }_{2}=a d \phi_{2}\left[-\sin \phi_{2} \hat{ x }+\cos \phi_{2} \hat{ y }\right] , so

d l_{1} \cdot d l_{2}=a b d \phi_{1} d \phi_{2}\left[\sin \phi_{1} \sin \phi_{2}+\cos \phi_{1} \cos \phi_{2}\right]=a b \cos \left(\phi_{2}-\phi_{1}\right) d \phi_{1} d \phi_{2} .

M=\frac{\mu_{0}}{4 \pi} \oint \oint \frac{d l_{1} \cdot d l_{2}}{ᴫ}=\frac{\mu_{0}}{4 \pi} \frac{a b}{\sqrt{a b / \beta}} \iint \frac{\cos \left(\phi_{2}-\phi_{1}\right)}{\sqrt{1-2 \beta \cos \left(\phi_{2}-\phi_{1}\right)}} d \phi_{2} d \phi_{1} .

Both integrals run from 0 to 2 \pi \text {. Do the } \phi_{2} \text { integral first, letting } u \equiv \phi_{2}-\phi_{1} :

\int_{-\phi_{1}}^{2 \pi-\phi_{1}} \frac{\cos u}{\sqrt{1-2 \beta \cos u}} d u=\int_{0}^{2 \pi} \frac{\cos u}{\sqrt{1-2 \beta \cos u}} d u

(since the integral runs over a complete cycle of cos u, we may as well change the limits to 0 2π).

Then the \phi_{1} integral is just 2π, and

M=\frac{\mu_{0}}{4 \pi} \sqrt{a b \beta} 2 \pi \int_{0}^{2 \pi} \frac{\cos u}{\sqrt{1-2 \beta \cos u}} d u=\frac{\mu_{0}}{2} \sqrt{a b \beta} \int_{0}^{2 \pi} \frac{\cos u}{\sqrt{1-2 \beta \cos u}} d u.

(a) If a is small, then \beta \ll 1, so (using the binomial theorem)

\frac{1}{\sqrt{1-2 \beta \cos u}} \cong 1+\beta \cos u, \text { and } \int_{0}^{2 \pi} \frac{\cos u}{\sqrt{1-2 \beta \cos u}} d u \cong \int_{0}^{2 \pi} \cos u d u+\beta \int_{0}^{2 \pi} \cos ^{2} u d u=0+\beta \pi ,

and hence  M=\left(\mu_{0} \pi / 2\right) \sqrt{a b \beta^{3}} . \text { Moreover, } \beta \cong a b /\left(b^{2}+z^{2}\right), \text { so } M \cong \frac{\mu_{0} \pi a^{2} b^{2}}{2\left(b^{2}+z^{2}\right)^{3 / 2}} (same as in Prob. 7.22).

(b) More generally,

(1+\epsilon)^{-1 / 2}=1-\frac{1}{2} \epsilon+\frac{3}{8} \epsilon^{2}-\frac{5}{16} \epsilon^{3}+\cdots \Longrightarrow \frac{1}{\sqrt{1-2 \beta \cos u}}=1+\beta \cos u+\frac{3}{2} \beta^{2} \cos ^{2} u+\frac{5}{2} \beta^{3} \cos ^{3} u+\cdots ,

so

M=\frac{\mu_{0}}{2} \sqrt{a b \beta}\left\{\int_{0}^{2 \pi} \cos u d u+\beta \int_{0}^{2 \pi} \cos ^{2} u d u+\frac{3}{2} \beta^{2} \int_{0}^{2 \pi} \cos ^{3} u d u+\frac{5}{2} \beta^{3} \int_{0}^{2 \pi} \cos ^{4} u d u+\cdots\right\}

=\frac{\mu_{0}}{2} \sqrt{a b \beta}\left[0+\beta(\pi)+\frac{3}{2} \beta^{2}(0)+\frac{5}{2} \beta^{3}\left(\frac{3}{4} \pi\right)+\cdots\right]=\frac{\mu_{0} \pi}{2} \sqrt{a b \beta^{3}}\left(1+\frac{15}{8} \beta^{2}+(  ) \beta^{4}+\cdots\right) . qed

Related Answered Questions