Question 7.58: A transformer (Prob. 7.57) takes an input AC voltage of ampl...

A transformer (Prob. 7.57) takes an input AC voltage of amplitude V_{1} , and delivers an output voltage of amplitude V_{2} , which is determined by the turns ratio \left(V_{2} / V_{1}=N_{2} / N_{1}\right) . \text { If } N_{2}>N_{1}, the output voltage is greater than the input voltage. Why doesn’t this violate conservation of energy? Answer: Power is the product of voltage and current; if the voltage goes up, the current must come down. The purpose of this problem is to see exactly how this works out, in a simplified model.

(a) In an ideal transformer, the same flux passes through all turns of the primary and of the secondary. Show that in this case M^{2}=L_{1} L_{2} , where M is the mutual inductance of the coils, and L_{1}, L_{2} are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage V_{ in }=V_{1} \cos (\omega t), and the secondary is connected to a resistor, R. Show that the two currents satisfy the relations

L_{1} \frac{d I_{1}}{d t}+M \frac{d I_{2}}{d t}=V_{1} \cos (\omega t) ; \quad L_{2} \frac{d I_{2}}{d t}+M \frac{d I_{1}}{d t}=-I_{2} R .

(c) Using the result in (a), solve these equations for I_{1}(t) \text { and } I_{2}(t). (Assume I_{1} has no DC component.)

(d) Show that the output voltage \left(V_{\text {out }}=I_{2} R\right) divided by the input voltage \left(V_{\text {in }}\right) is equal to the turns ratio: V_{\text {out }} / V_{\text {in }}=N_{2} / N_{1} .

(e) Calculate the input power\left(P_{\text {in }}=V_{\text {in }} I_{1}\right) and the output power \left(P_{\text {out }}=V_{\text {out }} I_{2}\right), and show that their averages over a full cycle are equal.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) Suppose current } I_{1} \text { flows in coil } 1 \text {, and } I_{2} \text { in coil } 2 \text {. Then (if } \Phi \text { is the flux through one turn) }:

\Phi_{1}=I_{1} L_{1}+M I_{2}=N_{1} \Phi ; \quad \Phi_{2}=I_{2} L_{2}+M I_{1}=N_{2} \Phi, \quad \text { or } \Phi=I_{1} \frac{L_{1}}{N_{1}}+I_{2} \frac{M}{N_{1}}=I_{2} \frac{L_{2}}{N_{2}}+I_{1} \frac{M}{N_{2}} .

\text { In case } I_{1}=0, \text { we have } \frac{M}{N_{1}}=\frac{L_{2}}{N_{2}} ; \text { if } I_{2}=0 \text {, we have } \frac{L_{1}}{N_{1}}=\frac{M}{N_{2}} . \text { Dividing: } \frac{M}{L_{1}}=\frac{L_{2}}{M}, \text { or } L_{1} L_{2}=M^{2} . qed

\text { (b) }- ε _{1}=\frac{d \Phi_{1}}{d t}=L_{1} \frac{d I_{1}}{d t}+M \frac{d I_{2}}{d t}=V_{1} \cos (\omega t) ;- ε _{2}=\frac{d \Phi_{2}}{d t}=L_{2} \frac{d I_{2}}{d t}+M \frac{d I_{1}}{d t}=-I_{2} R . qed

\text { (c) Multiply the first equation by } L_{2}: L_{1} L_{2} \frac{d I_{1}}{d t}+L_{2} \frac{d I_{2}}{d t} M=L_{2} V_{1} \cos \omega t \text {. Plug in } L_{2} \frac{d I_{2}}{d t}=-I_{2} R-M \frac{d I_{1}}{d t} .

M^{2} \frac{d I_{1}}{d t}-M R I_{2}-M^{2} \frac{d I_{1}}{d t}=L_{2} V_{1} \cos \omega t \Rightarrow I_{2}(t)=-\frac{L_{2} V_{1}}{M R} \cos \omega t . L_{1} \frac{d I_{1}}{d t}+M\left(\frac{L_{2} V_{1}}{M R} \omega \sin \omega t\right)=V_{1} \cos \omega t .

\frac{d I_{1}}{d t}=\frac{V_{1}}{L_{1}}\left(\cos \omega t-\frac{L_{2}}{R} \omega \sin \omega t\right) \Rightarrow I_{1}(t)=\frac{V_{1}}{L_{1}}\left(\frac{1}{\omega} \sin \omega t+\frac{L_{2}}{R} \cos \omega t\right) .

\text { (d) } \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{I_{2} R}{V_{1} \cos \omega t}=\frac{-\frac{L_{2} V_{1}}{M R} \cos \omega t R}{V_{1} \cos \omega t}=-\frac{L_{2}}{M}=-\frac{N_{2}}{N_{1}} . \text { The ratio of the amplitudes is } \frac{N_{2}}{N_{1}} . qed

\text { (e) } P_{\text {in }}=V_{\text {in }} I_{1}=\left(V_{1} \cos \omega t\right)\left(\frac{V_{1}}{L_{1}}\right)\left(\frac{1}{\omega} \sin \omega t+\frac{L_{2}}{R} \cos \omega t\right)=\frac{\left(V_{1}\right)^{2}}{L_{1}}\left(\frac{1}{\omega} \sin \omega t \cos \omega t+\frac{L_{2}}{R} \cos ^{2} \omega t\right).

P_{ out }=V_{ out } I_{2}=\left(I_{2}\right)^{2} R=\frac{\left(L_{2} V_{1}\right)^{2}}{M^{2} R} \cos ^{2} \omega t . \text { Average of } \cos ^{2} \omega t \text { is } 1 / 2 \text {; average of } \sin \omega t \cos \omega t \text { is zero. } .

\text { So }\left\langle P_{\text {in }}\right\rangle=\frac{1}{2}\left(V_{1}\right)^{2}\left(\frac{L_{2}}{L_{1} R}\right) ;\left\langle P_{\text {out }}\right\rangle=\frac{1}{2}\left(V_{1}\right)^{2}\left[\frac{\left(L_{2}\right)^{2}}{M^{2} R}\right]=\frac{1}{2}\left(V_{1}\right)^{2}\left[\frac{\left(L_{2}\right)^{2}}{L_{1} L_{2} R}\right] ; \quad\left\langle P_{\text {in }}\right\rangle=\left\langle P_{\text {out }}\right\rangle=\frac{\left(V_{1}\right)^{2} L_{2}}{2 L_{1} R}.

Related Answered Questions