Calculate the power (energy per unit time) transported down the cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential difference V , and carry current I (down one and back up the other)
Calculate the power (energy per unit time) transported down the cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential difference V , and carry current I (down one and back up the other)
\left.\begin{array}{l} E =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{1}{s} \hat{ s } \\B =\frac{\mu_{0} I}{2 \pi} \frac{1}{s} \hat{\phi}\end{array}\right\} S =\frac{1}{\mu_{0}}( E \times B )=\frac{\lambda I}{4 \pi^{2} \epsilon_{0}} \frac{1}{s^{2}} \hat{ z } ;
P=\int S \cdot d a =\int_{a}^{b} S 2 \pi s d s=\frac{\lambda I}{2 \pi \epsilon_{0}} \int_{a}^{b} \frac{1}{s} d s=\frac{\lambda I}{2 \pi \epsilon_{0}} \ln (b / a) .
\text { But } V=\int_{a}^{b} E \cdot d l =\frac{\lambda}{2 \pi \epsilon_{0}} \int_{a}^{b} \frac{1}{s} d s=\frac{\lambda}{2 \pi \epsilon_{0}} \ln (b / a), \text { so } P=I V \text {. }\left.\begin{array}{l} E =\frac{\sigma}{\epsilon_{0}} \hat{ z } \\B =\mu_{0} K \hat{ x }=\frac{\mu_{0} I}{w} \hat{ x }\end{array}\right\} S =\frac{1}{\mu_{0}}( E \times B )=\frac{\sigma I}{\epsilon_{0} w} \hat{ y } ;
P=\int S \cdot d a =S w h=\frac{\sigma I h}{\epsilon_{0}}, \text { but } V=\int E \cdot d l =\frac{\sigma}{\epsilon_{0}} h, \text { so } P=I V .