Question 8.1: Calculate the power (energy per unit time) transported down ...

Calculate the power (energy per unit time) transported down the cables of Ex. 7.13 and Prob. 7.62, assuming the two conductors are held at potential difference V , and carry current I (down one and back up the other)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Example 7.13.

\left.\begin{array}{l} E =\frac{\lambda}{2 \pi \epsilon_{0}} \frac{1}{s} \hat{ s } \\B =\frac{\mu_{0} I}{2 \pi} \frac{1}{s} \hat{\phi}\end{array}\right\} S =\frac{1}{\mu_{0}}( E \times B )=\frac{\lambda I}{4 \pi^{2} \epsilon_{0}} \frac{1}{s^{2}} \hat{ z } ;

P=\int S \cdot d a =\int_{a}^{b} S 2 \pi s d s=\frac{\lambda I}{2 \pi \epsilon_{0}} \int_{a}^{b} \frac{1}{s} d s=\frac{\lambda I}{2 \pi \epsilon_{0}} \ln (b / a) .

\text { But } V=\int_{a}^{b} E \cdot d l =\frac{\lambda}{2 \pi \epsilon_{0}} \int_{a}^{b} \frac{1}{s} d s=\frac{\lambda}{2 \pi \epsilon_{0}} \ln (b / a), \text { so } P=I V \text {. }

Problem 7.62.

\left.\begin{array}{l} E =\frac{\sigma}{\epsilon_{0}} \hat{ z } \\B =\mu_{0} K \hat{ x }=\frac{\mu_{0} I}{w} \hat{ x }\end{array}\right\} S =\frac{1}{\mu_{0}}( E \times B )=\frac{\sigma I}{\epsilon_{0} w} \hat{ y } ;

P=\int S \cdot d a =S w h=\frac{\sigma I h}{\epsilon_{0}}, \text { but } V=\int E \cdot d l =\frac{\sigma}{\epsilon_{0}} h, \text { so } P=I V .

Related Answered Questions