Question 2.21: A 1-in-diameter rod, 3 ft long, of unknown material is found...

A 1 -in-diameter rod, 3 \mathrm{ft} long, of unknown material is found in a machine shop. A variety of inexpensive nondestructive tests are readily available to help determine the material, as described below:

(a) Visual inspection.

(b) Scratch test: Scratch the surface with a file; observe color of underlying material and depth of scratch.

(c) Check if it is attracted to a magnet.

(d) Measure weight (\pm 0.05 \mathrm{lbf}).

(e) Inexpensive bending deflection test: Clamp one end in a vise, leaving 24 in cantilevered. Apply a force of 100 \mathrm{lbf}(\pm 1 \mathrm{lbf}). Measure deflection of the free end (within \pm 1 / 32 in).

( f ) Brinell hardness test.

Choose which tests you would actually perform, and in what sequence, to minimize time and

cost, but to determine the material with a reasonable level of confidence. The table below provides

results that would be available to you if you choose to perform a given test. Explain your

process, and include any calculations. You may assume the material is one listed in Table A–5. If

it is carbon steel, try to determine an approximate specification from Table A–20.

Test Results if test were made
Prob. 2–21 Prob. 2–22 Pro 2-23
 (a)  \text { Dark gray, rough surface } \text { Silvery gray, smooth surface } \text { Reddish-brown, tarnished, }
 \text { finish, moderate scale } \text { finish, slightly tarnished }  \text { smooth surface finish }
(b)  \text { Metallic gray, moderate }  \text { Silvery gray, deep scratch } \text { Shiny brassy color, deep }
 \text { scratch }  \text { scratch }
\text { (c) }  \text { Magnetic } \text { Not magnetic }   \text { Not magnetic }
\text { (d) } W=7.95 \mathrm{lbf} W=2.90 \mathrm{lbf}  W=9.00 \mathrm{lbf}
(\text { e })  \delta=5 / 16 \text { in } \delta=7 / 8 \text { in }  \delta=17 / 32 \text { in }
\text { (f) } H_{B}=200 H_{B}=95 H_{B}=70
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three would favor steel, cast iron, or maybe a less common ferrous material. The expectation would likely be hot-rolled steel. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 7.95 \mathrm{lbf}, the unit weight is determined to be

w=\frac{W}{A l}=\frac{7.95 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.281 \mathrm{lbf} / \mathrm{in}^{3} \doteq 0.28 \mathrm{lbf} / \mathrm{in}^{3}

which agrees well with the unit weight of 0.282 \mathrm{lbf} / \mathrm{in}^{3} reported in Table A-5 for carbon steel. Nickel steel and stainless steel have similar unit weights, but surface finish and darker coloring do not favor their selection. To select a likely specification from TableA-20, perform a Brinell hardness test, then use Eq. (2-21) to estimate an ultimate strength of S_{u}=0.5 H_{B}=0.5(200)=100 \mathrm{kpsi}. Assuming the material is hot-rolled due to the rough surface finish, appropriate choices from Table A-20 would be one of the higher carbon steels, such as hot-rolled AISI 1050,1060 , or 1080 .

Eq. (2-21),

S_{u}= \begin{cases}0.5 H_{B} & \text { kpsi } \\ 3.4 H_{B} & \mathrm{MPa}\end{cases}

2.22

First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous material like aluminum. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 2.90 \mathrm{lbf}, the unit weight is determined to be

w=\frac{W}{A l}=\frac{2.9 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.103 \mathrm{lbf} / \mathrm{in}^{3}=0.10 \mathrm{lbf} / \mathrm{in}^{3}

which agrees reasonably well with the unit weight of 0.098 \mathrm{lbf} / \mathrm{in}^{3} reported in Table A-5 for aluminum. No other materials come close to this unit weight, so the material is likely aluminum.  .

2.23

First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous copper-based material such as copper, brass, or bronze. To further distinguish the material, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 9 \mathrm{lbf}, the unit weight is determined to be

w=\frac{W}{A l}=\frac{9.0 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.318 \mathrm{lbf} / \mathrm{in}^{3} \doteq 0.32 \mathrm{lbf} / \mathrm{in}^{3}

which agrees reasonably well with the unit weight of 0.322 \mathrm{lbf} / \mathrm{in}^{3} reported in Table A-5 for copper. Brass is not far off \left(0.309 \mathrm{lbf} / \mathrm{in}^{3}\right), so the deflection test could be used to gain additional insight. From the measured deflection and utilizing the deflection equation for an end-loaded cantilever beam from Table A-9, Young’s modulus is determined to be

E=\frac{F l^{3}}{3 I y}=\frac{100(24)^{3}}{3\left(\pi(1)^{4} / 64\right)(17 / 32)}=17.7 \mathrm{Mpsi}

which agrees better with the modulus for copper (17.2 Mpsi) than with brass (15.4 Mpsi). The conclusion is that the material is likely copper.

Table A–20

1 2 3 4 5 6 7 8
AISI No. Treatment Temperture °C (°F) Tensile Strength,Mpa (kpsi) Yield Strength,Mpa (kpsi) Elongation,% Reducation in Area , % Brinell Hardness
1030 Q&T* 205(400) 848(123) 648(94) 17 47 495
Q&T* 315(600) 800(116) 621(90) 19 53 401
Q&T* 425(800) 731(106) 579(84) 23 60 302
Q&T* 540(1000) 669(97) 517(75) 28 65 255
Q&T* 650(1200) 586(85) 441(64) 32 70 207
Normalized 925(1700) 521(75) 345(50) 32 61 149
Annealed 870(1600) 430(62) 317(46) 35 64 137
1040 Q&T 205(400) 779(113) 593(86) 19 48 262
Q&T 425(800) 758(110) 552(80) 21 54 241
Q&T 650(1200) 634(92) 434(63) 29 65 192
Normalized 900(1650) 590(86) 374(54) 28 55 170
Annealed 790(1450) 519(75) 353(51) 30 57 149
1050 Q&T* 205(400) 1120(163) 807(117) 9 27 514
Q&T* 425(800) 1090(158) 793(115) 13 36 444
Q&T* 650(1200) 717(104) 538(78) 28 65 235
Normalized 900(1650) 748(108) 427(62) 20 39 217
Annealed 790(1450) 636(92) 365(53) 24 40 187
1060 Q&T 425(800) 1080(156) 765(111) 14 41 311
Q&T 540(1000) 965(140) 669(97) 17 45 277
Q&T 650(1200) 800(116) 524(76) 23 54 229
Normalized 900(1650) 776(112) 421(61) 18 37 229
Annealed 790(1450) 626(91) 372(54) 22 38 179
1095 Q&T 315(600) 1260(183) 813(118) 10 30 375
Q&T 425(800) 1210(176) 772(112) 12 32 363
Q&T 540(1000) 1090(158) 676(98) 15 37 321
Q&T 650(1200) 896(130) 552(80) 21 47 269
Normalized 900(1650) 1010(147) 500(72) 9 13 293
Annealed 790(1450) 658(95) 380(55) 13 21 192
1141 Q&T 315(600) 1460(212) 1280(186) 9 32 415
Q&T 540(1000) 896(130) 765(111) 18 57 262
Q&T* 205(400) 1630(236) 1460(212) 10 41 467
Q&T* 315(600) 1500(217) 1380(200) 11 43 435
Q&T* 425(800) 1280(186) 1190(173) 13 49 380
Q&T* 540(1000) 1030(150) 910(132) 17 57 315
Q&T* 650(1200) 814(118) 703(102) 22 64 245
Normalized 870(1600) 670(97) 436(63) 25 59 197
Annealed 865(1585) 560(81) 361(52) 28 56 156
Q&T 205(400) 1770(257) 1640(238) 8 38 510
4140 Q&T 315(600) 1550(225) 1430(208) 9 43 445
Q&T 425(800) 1250(181) 1140(165) 13 49 370
Q&T 540(1000) 951(138) 834(121) 18 58 285
Q&T 650(1200) 758(110) 655(95) 22 63 230
Normalized 870(1600) 1020(148) 655(95) 18 47 302
Annealed 815(1500) 655(95) 417(61) 26 57 197
4340 Q&T 315(600) 1720(250) 1590(230) 10 40 486
Q&T 425(800) 1470(213) 1360(198) 10 44 430
Q&T 540(1000) 1170(170) 1080(156) 13 51 360
Q&T 650(1200) 965(140) 855(124) 19 60 280

Related Answered Questions