For a cantilever beam loaded in bending, prove that \beta=2 / 3 for the S^{\beta} / \rho guidelines in Fig. 2-19.
For a cantilever beam loaded in bending, prove that \beta=2 / 3 for the S^{\beta} / \rho guidelines in Fig. 2-19.
For strength,
\sigma=F l / Z=S (1)
where F l is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 90]. The section modulus is strictly a function of the dimensions of the cross section and has the units in ^{3} (ips) or \mathrm{m}^{3} (SI). Thus, for a given cross section, Z=C(A)^{3 / 2}, where C is a number. For example, for a circular cross section, C=(4 \sqrt{\pi})^{-1}. Then, for strength, Eq. (1) is
\frac{F l}{C A^{3 / 2}}=S \quad \Rightarrow \quad A=\left(\frac{F l}{C S}\right)^{2 / 3} (2)
For mass,
m=A l \rho=\left(\frac{F l}{C S}\right)^{2 / 3} l \rho=\left(\frac{F}{C}\right)^{2 / 3} l^{5 / 3}\left(\frac{\rho}{S^{2 / 3}}\right)So, f_{3}(M)=\rho / S^{2 / 3}, and maximize S^{2 / 3} / \rho. Thus, \beta=2 / 3. .
Eq. (3-26b)
\sigma_{\max }=\frac{M}{Z}