Question 12.14: A 1.25-in.-diameter solid shaft is subjected to an axial for...

A 1.25-in.-diameter solid shaft is subjected to an axial force of P = 520 lb, a horizontal shear force of V = 275 lb, and a concentrated torque of T = 880 lb-in., acting in the directions shown in Figure P12.14. Assume L = 7.0 in. Determine the normal and shear stresses at (a) point H and (b) point K. For each point, show these stresses on a stress element.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(1.25  in .)^{2}=1.227185  in. ^{2} & J=\frac{\pi}{32}(1.25  in .)^{4}=0.239684  in. ^{4} \\Q=\frac{(1.25  in .)^{3}}{12}=0.162760  in .{ }^{3} & I_{y}=I_{z}=\frac{\pi}{64}(1.25  in .)^{4}=0.119842  in. ^{4}\end{array}

 

Equivalent forces at H and K:

\begin{aligned}&F_{x}=-520  lb \\&F_{y}=0  lb \\&F_{z}=275  lb\end{aligned}

 

 

Equivalent moments at H and K:

\begin{aligned}M_{x} &=880  lb – in .\\M_{y} &=-(275  lb )(7  in .)=-1,925  lb – in . \\M_{z} &=0  lb \text {-in. }\end{aligned}

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

(a) Consider point H.
Force F _{ x } creates an axial stress at H. The magnitude of this normal stress is:

\sigma_{x}=\frac{520  lb }{1.227185  in .{ }^{2}}=423.734  psi

Force F _{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{(275  lb )\left(0.162760  in. ^{3}\right)}{\left(0.119842  in. ^{4}\right)(1.25  in .)}=298.787  psi

Moment M _{x}, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{(880  lb – in .)(1.25  in. / 2)}{0.239684  in. ^{4}}=2,294.683  psi

Moment M _{ y } does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

 

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=-424  psi \\\sigma_{z} &=0  psi \\\tau_{x z} &=298.787  psi +2,294.683  psi =2,590  psi\end{aligned}

 

(b) Consider point K.
Force F _{x} creates an axial stress at K. The magnitude of this normal stress is:

\sigma_{x}=\frac{520  lb }{1.227185  in .^{2}}=423.734  psi

Force F _{z} does not cause either a normal stress or a shear stress at K.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{(880  lb – in .)(1.25  in . / 2)}{0.239684  in. ^{4}}=2,294.683  psi

Moment M _{ y } creates bending stress at K. The magnitude of this stress is:

\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(1,925  lb – in .)(1.25  in . / 2)}{0.119842  in .^{4}}=10,039.240  psi

 

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=-423.734  psi -10,039.240  psi \\&=-10,460  psi \\\sigma_{y} &=0  psi \\\tau_{x y} &=-2,290  psi\end{aligned}

 

 

 

 

 

 

Related Answered Questions