Question 8.19: 19 Suppose you had an electric charge qe and a magnetic mono...

^{19}  Suppose you had an electric charge q_{e} and a magnetic monopole q_{m}. The field of the electric charge is

E =\frac{1}{4 \pi \epsilon_{0}} \frac{q_{e}}{ᴫ^{2}} \hat{ ᴫ}

(of course), and the field of the magnetic monopole is

B =\frac{\mu_{0}}{4 \pi} \frac{q_{m}}{ᴫ^{2}} \hat{ᴫ } .

Find the total angular momentum stored in the fields, if the two charges are separated by a distance d. \text { [Answer: ( } \left.\left.\mu_{0} / 4 \pi\right) q_{e} q_{m} .\right]^{20}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

E =\frac{q_{e}}{4 \pi \epsilon_{0}} \frac{ r }{r^{3}};

B =\frac{\mu_{0} q_{m}}{4 \pi} \frac{ r ^{\prime}}{r^{\prime 3}}=\frac{\mu_{0} q_{m}}{4 \pi} \frac{( r -d \hat{ z })}{\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}} .

Momentum density (Eq. 8.32):

g =\epsilon_{0}( E \times B )                              (8.32)

g =\epsilon_{0}( E \times B )=\frac{\mu_{0} q_{e} q_{m}}{(4 \pi)^{2}} \frac{(-d)( r \times \hat{ z })}{r^{3}\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}} .

Angular momentum density (Eq. 8.33):

\ell = r \times g =\epsilon_{0}[ r \times( E \times B )]                        (8.33)

\ell =( r \times g )=-\frac{\mu_{0} q_{e} q_{m} d}{(4 \pi)^{2}} \frac{ r \times( r \times \hat{ z })}{r^{3}\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}} . \quad \text { But } r \times( r \times \hat{ z })= r ( r \cdot \hat{ z })-r^{2} \hat{ z }=r^{2} \cos \theta \hat{ r }-r^{2} \hat{ z } .

The x and y components will integrate to zero; using (\hat{ r })_{z}=\cos \theta , we have:

L =-\frac{\mu_{0} q_{e} q_{m} d}{(4 \pi)^{2}} \hat{ z } \int \frac{r^{2}\left(\cos ^{2} \theta-1\right)}{r^{3}\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}} r^{2} \sin \theta d r d \theta d \phi . \quad \text { Let } u \equiv \cos \theta:

=\frac{\mu_{0} q_{e} q_{m} d}{(4 \pi)^{2}} \hat{ z }(2 \pi) \int_{-1}^{1} \int_{0}^{\infty} \frac{r\left(1-u^{2}\right)}{\left(r^{2}+d^{2}-2 r d u\right)^{3 / 2}} d u d r .

Do the r integral first:

\int_{0}^{\infty} \frac{r d r}{\left(r^{2}+d^{2}-2 r d u\right)^{3 / 2}}=\left.\frac{(r u-d)}{d\left(1-u^{2}\right) \sqrt{r^{2}+d^{2}-2 r d u}}\right|_{0} ^{\infty}=\frac{u}{d\left(1-u^{2}\right)}+\frac{d}{d\left(1-u^{2}\right) d}=\frac{u+1}{d\left(1-u^{2}\right)}=\frac{1}{d(1-u)} .

Then

L =\frac{\mu_{0} q_{e} q_{m} d}{8 \pi} \hat{ z } \frac{1}{d} \int_{-1}^{1} \frac{\left(1-u^{2}\right)}{(1-u)} d u=\frac{\mu_{0} q_{e} q_{m}}{8 \pi} \hat{ z } \int_{-1}^{1}(1+u) d u=\left.\frac{\mu_{0} q_{e} q_{m}}{8 \pi} \hat{ z }\left(u+\frac{u^{2}}{2}\right)\right|_{-1} ^{1}=\frac{\mu_{0} q_{e} q_{m}}{4 \pi} \hat{ z } .

8.20

Related Answered Questions