Question 8.22: 23 A point charge q is a distance a > R from the axis of ...

^{23} A point charge q is a distance a > R from the axis of an infinite solenoid (radius R, n turns per unit length, current I). Find the linear momentum and the angular momentum (with respect to the origin) in the fields. (Put q on the x axis, with the solenoid along z; treat the solenoid as a nonconductor, so you don’t need to worry about induced charges on its surface.) [Answer: \left. p =\left(\mu_{0} q n I R^{2} / 2 a\right) \hat{ y } ; L = 0 \right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

B =\mu_{0} n I \hat{ z },(s<R) ; \quad E =\frac{q}{4 \pi \epsilon_{0}} \frac{ ᴫ }{ᴫ^{3}}, \text { where } ᴫ =(x-a, y, z).

g =\epsilon_{0}( E \times B )=\epsilon_{0}\left(\mu_{0} n I\right)\left(\frac{q}{4 \pi \epsilon_{0}}\right) \frac{1}{ᴫ^{3}}( ᴫ \times \hat{ z })=\frac{\mu_{0} q n I}{4 \pi ᴫ^{3}}[y \hat{ x }-(x-a) \hat{ y }].

Linear Momentum.

p =\int g d \tau=\frac{\mu_{0} q n I}{4 \pi} \int \frac{y \hat{ x }-(x-a) \hat{ y }}{\left[(x-a)^{2}+y^{2}+z^{2}\right]^{3 / 2}} d x d y d z . The \hat{ x } term is odd in y; it integrates to zero.

=-\frac{\mu_{0} q n I}{4 \pi} \hat{ y } \int \frac{(x-a)}{\left[(x-a)^{2}+y^{2}+z^{2}\right]^{3 / 2}} d x d y d z . Do the z integral first :

\left.\frac{z}{\left[(x-a)^{2}+y^{2}\right] \sqrt{(x-a)^{2}+y^{2}+z^{2}}}\right|_{-\infty} ^{\infty}=\frac{2}{\left[(x-a)^{2}+y^{2}\right]}.

=-\frac{\mu_{0} q n I}{2 \pi} \hat{ y } \int \frac{(x-a)}{\left[(x-a)^{2}+y^{2}\right]} d x d ySwitch to polar coordinates :

x=s \cos \phi, y=s \sin \phi, d x d y \Rightarrow s d s d \phi ;\left[(x-a)^{2}+y^{2}\right]=s^{2}+a^{2}-2 s a \cos \phi .

=-\frac{\mu_{0} q n I}{2 \pi} \hat{ y } \int \frac{(s \cos \phi-a)}{\left(s^{2}+a^{2}-2 s a \cos \phi\right)} s d s d \phi

Now \int_{0}^{2 \pi} \frac{\cos \phi d \phi}{(A+B \cos \phi)}=\frac{2 \pi}{B}\left(1-\frac{A}{\sqrt{A^{2}-B^{2}}}\right) ; \quad \int_{0}^{2 \pi} \frac{d \phi}{(A+B \cos \phi)}=\frac{2 \pi}{\sqrt{A^{2}-B^{2}}}.

\text { Here } A^{2}-B^{2}=\left(s^{2}+a^{2}\right)^{2}-4 s^{2} a^{2}=s^{4}+2 s^{2} a^{2}+a^{4}-4 s^{2} a^{2}=\left(s^{2}-a^{2}\right)^{2} ; \sqrt{A^{2}-B^{2}}=a^{2}-s^{2}.

=\frac{\mu_{0} q n I}{2 a} \hat{ y } \int\left[1-\left(\frac{a^{2}+s^{2}}{a^{2}-s^{2}}\right)+\frac{2 a^{2}}{\left(a^{2}-s^{2}\right)}\right] s d s=\frac{\mu_{0} q n I}{a} \hat{ y } \int_{0}^{R} s d s=\frac{\mu_{0} q n I R^{2}}{2 a} \hat{ y }.

Angular Momentum.

\ell = r \times g =\frac{\mu_{0} q n I}{4 \pi ᴫ ^{3}} r \times[y \hat{ x }-(x-a) \hat{ y }]=\frac{\mu_{0} q n I}{4 \pi ᴫ^{3}}\left\{z(x-a) \hat{ x }+z y \hat{ y }-\left[x(x-a)+y^{2}\right] \hat{ z }\right\}.

\text { The } \hat{ x } \text { and } \hat{ y } terms are odd in z, and integrate to zero, so

L =-\frac{\mu_{0} q n I}{4 \pi} \hat{ z } \int \frac{x^{2}+y^{2}-x a}{\left[(x-a)^{2}+y^{2}+z^{2}\right]^{3 / 2}} d x d y d z . The z integral is the same as before.

=-\frac{\mu_{0} q n I}{2 \pi} \hat{ z } \int \frac{x^{2}+y^{2}-x a}{\left[(x-a)^{2}+y^{2}\right]} d x d y=-\frac{\mu_{0} q n I}{2 \pi} \hat{ z } \int \frac{s-a \cos \phi}{\left(s^{2}+a^{2}-2 s a \cos \phi\right)} s^{2} d s d \phi

 

=-\mu_{0} q n I \hat{ z } \int\left[\frac{s^{2}}{a^{2}-s^{2}}+\left(1-\frac{a^{2}+s^{2}}{a^{2}-s^{2}}\right)\right] s d s=-\mu_{0} q n I \hat{ z } \int_{0}^{R} \frac{s^{2}-s^{2}}{a^{2}-s^{2}} s d s=\text { zero. }

Related Answered Questions