Question 8.23: (a) Carry through the argument in Sect. 8.1.2, starting with...

(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using J _{f} in place of J. Show that the Poynting vector becomes

\frac{d W}{d t}=\int_{ \nu }( E \cdot J ) d \tau                        (8.6)

S = E × H                                                         (8.46)

and the rate of change of the energy density in the fields is

\frac{\partial u}{\partial t}= E \cdot \frac{\partial D }{\partial t}+ H \cdot \frac{\partial B }{\partial t}

For linear media, show that ^{24}

 

u=\frac{1}{2}( E \cdot D + B \cdot H )                        (8.47)

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15, with \rho_{f} \text { and } J _{f} in place of ρ and J. Don’t bother to construct the Maxwell stress tensor, but do show that the momentum density is ^{25}

 

f =\epsilon_{0}[(\nabla \cdot E ) E - E \times(\nabla \times E )]-\frac{1}{\mu_{0}}[ B \times(\nabla \times B )]-\epsilon_{0} \frac{\partial}{\partial t}( E \times B )                                            (8.15)

g = D × B.                                      (8.48) 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) If we’re only interested in the work done on free charges and currents, Eq. 8.6 becomes

\frac{d W}{d t}=\int_{ \nu }\left( E \cdot J _{f}\right) d \tau . \text { But } J _{f}= \nabla \times H -\frac{\partial D }{\partial t}(\text { Eq. } 7.56), \text { so } E \cdot J _{f}= E \cdot( \nabla \times H )- E \cdot \frac{\partial D }{\partial t}

 

\begin{matrix} \text { (i) } \nabla \cdot D =\rho_{f}, & \text { (iii) } \nabla \times E =-\frac{\partial B }{\partial t} \text {, } \\ \text { (ii) } \nabla \cdot B =0, & \text { (iv) } \nabla \times H = J _{f}+\frac{\partial D }{\partial t} \text {. } \end{matrix}                        (7.56)

From product rule #6, \nabla \cdot( E \times H )= H \cdot( \nabla \times E )- E \cdot( \nabla \times H ), \text { while } \nabla \times E =-\frac{\partial B }{\partial t} , so

E \cdot( \nabla \times H )=- H \cdot \frac{\partial B }{\partial t}- \nabla \cdot( E \times H ) . \text { Therefore } E \cdot J _{f}=- H \cdot \frac{\partial B }{\partial t}- E \cdot \frac{\partial D }{\partial t}- \nabla \cdot( E \times H ) , and hence

\frac{d W}{d t}=-\int_{ \nu }\left( E \cdot \frac{\partial D }{\partial t}+ H \cdot \frac{\partial B }{\partial t}\right) d \tau-\oint_{ S }( E \times H ) \cdot d a.

This is Poynting’s theorem for the fields in matter. Evidently the Poynting vector, representing the power per unit area transported by the fields, is S = E×H, and the rate of change of the electromagnetic energy density is \frac{\partial u_{ em }}{\partial t}= E \cdot \frac{\partial D }{\partial t}+ H \cdot \frac{\partial B }{\partial t} .

For linear media, D =\epsilon E \text { and } H =\frac{1}{\mu} B , \text { with } \epsilon \text { and } \mu constant (in time); then

\frac{\partial u_{ em }}{\partial t}=\epsilon E \cdot \frac{\partial E }{\partial t}+\frac{1}{\mu} B \cdot \frac{\partial B }{\partial t}=\frac{1}{2} \epsilon \frac{\partial}{\partial t}( E \cdot E )+\frac{1}{2 \mu} \frac{\partial}{\partial t}( B \cdot B )=\frac{1}{2} \frac{\partial}{\partial t}( E \cdot D + B \cdot H ) .

so  u_{ em }=\frac{1}{2}( E \cdot D + B \cdot H ) . \quad \text { qed }

(b) If we’re only interested in the force on free charges and currents, Eq. 8.13 becomes f =\rho_{f} E + J _{f} \times B.

F =\int_{ \nu }( E + v \times B ) \rho d \tau=\int_{ \nu }(\rho E + J \times B ) d \tau                           (8.13)

\text { But } \rho_{f}= \nabla \cdot D , \text { and } J _{f}= \nabla \times H -\frac{\partial D }{\partial t}, \text { so } f = E ( \nabla \cdot D )+( \nabla \times H ) \times B -\left(\frac{\partial D }{\partial t}\right) \times B . Now

\frac{\partial}{\partial t}( D \times B )=\frac{\partial D }{\partial t} \times B + D \times\left(\frac{\partial B }{\partial t}\right), \text { and } \frac{\partial B }{\partial t}=- \nabla \times E , \text { so } \frac{\partial D }{\partial t} \times B =\frac{\partial}{\partial t}( D \times B )+ D \times( \nabla \times E ) , and

\text { hence } f = E ( \nabla \cdot D )- D \times( \nabla \times E )- B \times( \nabla \times H )-\frac{\partial}{\partial t}( D \times B ) . As before, we can with impunity add the term H ( \nabla \cdot B ) , so

f =\{[ E ( \nabla \cdot D )- D \times( \nabla \times E )]+[ H ( \nabla \cdot B )- B \times( \nabla \times H )]\}-\frac{\partial}{\partial t}( D \times B )

The term in curly brackets can be written as the divergence of a stress tensor (as in Eq. 8.19), and the last term is (minus) the rate of change of the momentum density, g = × B.

f =\nabla \cdot \overleftrightarrow{ T }-\epsilon_{0} \mu_{0} \frac{\partial S }{\partial t}                           (8.19)

Related Answered Questions