We begin with some preliminaries. From Table A–20,
Table A–20
Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm \left(\frac{3}{4} \text { to } 1 \frac{1}{4} \text { in }\right) \text {. } These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15. |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
|
|
Tensile
Strength,
MPa (kpsi) |
Yield Strength,
MPa (kpsi) |
Elongation in
2 in, % |
|
|
UNS No. |
SAE and/or
AISI No. |
Processing |
Reduction in
Area, % |
Brinell
Hardness |
G10060 |
1006 |
HR |
300 (43) |
170 (24) |
30 |
55 |
86 |
|
|
CD |
330 (48) |
280 (41) |
20 |
45 |
95 |
G10100 |
1010 |
HR |
320 (47) |
180 (26) |
28 |
50 |
95 |
|
|
CD |
370 (53) |
300 (44) |
20 |
40 |
105 |
G10150 |
1015 |
HR |
340 (50) |
190 (27.5) |
28 |
50 |
101 |
|
|
CD |
390 (56) |
320 (47) |
18 |
40 |
111 |
G10180 |
1018 |
HR |
400 (58) |
220 (32) |
25 |
50 |
116 |
|
|
CD |
440 (64) |
370 (54) |
15 |
40 |
126 |
G10200 |
1020 |
HR |
380 (55) |
210 (30) |
25 |
50 |
111 |
|
|
CD |
470 (68) |
390 (57) |
15 |
40 |
131 |
G10300 |
1030 |
HR |
470 (68) |
260 (37.5) |
25 |
42 |
137 |
|
|
CD |
520 (76) |
440 (64) |
15 |
35 |
149 |
G10350 |
1035 |
HR |
500 (72) |
270 (39.5) |
20 |
40 |
143 |
|
|
CD |
550 (80) |
460 (67) |
12 |
35 |
163 |
G10400 |
1040 |
HR |
520 (76) |
290 (42) |
18 |
40 |
149 |
|
|
CD |
590 (85) |
490 (71) |
12 |
35 |
170 |
G10450 |
1050 |
HR |
570 (82) |
310 (45) |
16 |
40 |
163 |
|
|
CD |
630 (91) |
530 (77) |
12 |
35 |
179 |
G10500 |
1060 |
HR |
620 (90) |
340 (49.5) |
15 |
35 |
179 |
|
|
CD |
690 (100) |
580 (84) |
10 |
30 |
197 |
G10600 |
1060 |
HR |
680 (98) |
370 (54) |
12 |
30 |
201 |
G10800 |
1080 |
CD |
770 (112) |
420 (61.5) |
10 |
25 |
229 |
G10950 |
1095 |
HR |
830 (120) |
460 (66) |
10 |
25 |
248 |
S_{ut}= 100 \ kpsi \ and \ S_y= 84 kpsi.
Note that F_a= F_m= 8 kip.
The Marin factors are, deterministically,
ka= 2.70(100)^{−0.265}= 0.797 : Eq. (6–19)
k_a=as^b_{ut}
, Table 6–2,p. 288
Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19) |
Surface Finish |
Factor a |
Exponent
b |
S_{ut}, kpsi |
S_{ut}, MPa |
Ground |
1.34 |
1.58 |
−0.085 |
Machined or cold-drawn |
2.7 |
4.51 |
−0.265 |
Hot-rolled |
14.4 |
57.7 |
−0.718 |
As-forged |
39.9 |
272 |
−0.995 |
k_b= 1 (axial loading, see k_c)
k_c=0.85 : Eq. (6–26), p. 290
k_d=k_e=k_f=1
S_e=0.797\left(1\right) 0.850\left(1\right) \left(1\right) \left(1\right) 0.5\left(100\right) =33.9 kpsi: Eqs. (6–8), (6–18), p. 282, p. 287
The nominal axial stress components
(6–8)
S_{e}^{\prime}= \begin{cases}0.5 S_{u t} & S_{u t} \leq 200 \mathrm{kpsi}(1400 \mathrm{MPa}) \\ 100 \mathrm{kpsi} & S_{u t}>200 \mathrm{kpsi} \\ 700 \mathrm{MPa} & S_{u t}>1400 \mathrm{MPa}\end{cases}
(6–18)
S_{e}=k_{a} k_{b} k_{c} k_{d} k_{c} k_{f} S_{e}^{\prime}
\sigma _{a0} \ and \ \sigma _{m0} are \sigma_{a0}=\frac{4F_a}{\pi d^2} =\frac{4\left(8\right) }{\pi 1.5^2}=4.53 kpsi \sigma _{m0}=\frac{4F_m}{\pi d^2} =\frac{4\left(8\right) }{\pi 1.5^2} =4.53 kpsi.
Applying K_f to both components \sigma_{a0} and \sigma _{m0} constitutes a prescription of no notch
yielding:
\sigma _a=K_f\sigma_{a0}=1.85\left(4.53\right) =8.38 \ kpsi \ =\sigma _m
(a) Let us calculate the factors of safety first. From the bottom panel from Table 6–7
Table 6–7
Amplitude and Steady Coordinates of Strength and Important
Intersections in First Quadrant for Gerber and Langer Failure Criteria |
Intersecting Equations |
Intersection Coordinates |
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2 =1
Load liner=\frac{S_a}{S_m} |
S_a=\frac{r^2S^2_{ut}}{S_e} \left[-1+\sqrt{1+\left(\frac{2S_e}{rS_{ut}} \right)^2 } \right]
S_m=\frac{S_a}{r} |
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m} |
S_a=\frac{rS_y}{1+r}
S_m=\frac{rS_y}{1+r} |
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2 =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1 |
S_m=\frac{2S^2_{ut}}{2S_e} \left[1-\sqrt{1+\left(\frac{2S_e}{S_{ut}} \right)^2 \left(1-\frac{S_y}{S_e} \right) } \right]
S_{a}=S_{y}-S_{m}, r_{\text {crit }}=S_{a} / S_{m} |
Fatigue factor of safety
n_f=\frac{1}{2} \left(\frac{S_{ut}}{\sigma _m} \right)^2\frac{\sigma _a}{S_e}\left[-1+\sqrt{1+\left(\frac{2\sigma _mS_e}{S_{ut}\sigma _a} \right)^2 } \right] \ \sigma _m\gt 0 |
the factor of safety for fatigue is:
n_f=\frac{1}{2} \left(\frac{100}{8.38} \right)^2\left(\frac{8.38}{33.9} \right) \left\{-1+\sqrt{1+\left[\frac{2\left(8.38\right)33.9 }{100\left(8.38\right) } \right]^2 } \right\} =3.66
From Eq. (6–49) the factor of safety guarding against first-cycle yield is
n_y=\frac{s_y}{\sigma _a+\sigma _m} =\frac{84}{8.38+8.38} =5.01
Thus, we see that fatigue will occur first and the factor of safety is 3.68. This can be seen in Fig. 6–28 where the load line intersects the Gerber fatigue curve first at point B.
If the plots are created to true scale it would be seen that
n_f = {OA}/{OB}.
From the first panel of Table 6–7, r =\sigma _a/\sigma _m= 1,
S_a=\frac{\left(1\right)^2100^2 }{2\left(33.9\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(33.9\right) }{\left(1\right)100 } \right]^2 } \right\} =30.7 kpsi
S_m=\frac{S_a}{r} =\frac{30.7}{1} =30.7 kpsi
As a check on the previous result,
n_f = {OA}/{OB} = {S_a}/{\sigma _a}={S_m}/{\sigma _m} = {30.7}/{8.38}=3.66
and we see total agreement.
We could have detected that fatigue failure would occur first without drawing Fig. 6–28 by calculating r_{crit} .
From the third row third column panel of Table 6–7, the intersection point between fatigue and first-cycle yield is
S_m=\frac{100^2}{2\left(33.9\right) } \left[1-\sqrt{1+\left(\frac{2\left(33.9\right) }{100} \right)^2\left(1-\frac{84}{33.9} \right) } \right] =64.0 kspi
S_a=S_y-S_m=84-64=20 kpsi
The critical slope is thus
r_{crit}=\frac{S_a}{S_m} =\frac{20}{64} =0.312
which is less than the actual load line of r = 1.
This indicates that fatigue occurs before first-cycle-yield.
(b) Repeating the same procedure for the ASME-elliptic line, for fatigue
n_f=\sqrt{\frac{1}{\left({8.38}/{33.9}\right)^2+\left({8.38}/{84}\right)^2 } } = 3.75
Again, this is less than n_y= 5.01 and fatigue is predicted to occur first.
From the first row second column panel of Table 6–8
Table 6–8
Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for ASME-
Elliptic and Langer Failure Criteria |
Intersecting Equations |
Intersection Coordinates |
\left(\frac{S_u}{S_e}\right)^2 +\left(\frac{S_m}{S_{y}}\right)^2 =1
Load liner=\frac{S_a}{S_m} |
S_a=\sqrt{\frac{r^2S^2_{e}S^2_y}{S^2_e+r^2S^2_y} }
S_m=\frac{S_a}{r} |
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m} |
S_a=\frac{rS_y}{1+r}
S_m=\frac{S_y}{1+r} |
\left(\frac{S_a}{S_e}\right)^2 +\left(\frac{S_m}{S_{y}}\right)^2 =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1 |
S_a=0 , \frac{2S_yS^2_e}{S^2_e+S^2_y}
S_{m}={S_y} – {S_a}, r_{ctrit}={S_a}/{S_m} |
Fatigue factor of safety
n_f=\sqrt{\frac{1}{\left({\sigma _a}/{S_{e}}\right)^2+\left({\sigma _m}/{S_{y}}\right)^2 } } |
, with r = 1 , we obtain the coordinates S_a \ and \ S_m of point B in Fig. 6–29 as
S_a=\sqrt{\frac{\left(1\right)^233.9^2\left(84\right)^2 }{33.9^2+\left(1\right)84^2 } } =31.4 kpsi
, S_m=\frac{S_a}{r} =\frac{31.4}{1} =31.4 kpsi
To verify the fatigue factor of safety, n_f={S_a}/{\sigma _a}={31.4}/{8.38}=3.75.
As before, let us calculate r_{crit}.
From the third row second column panel of Table 6–8,
S_a=\frac{2\left(84\right)33.9^2 }{33.9^2+84^2}=23.5 , S_m=S_y-S_a=84-23.5=60.5 kpsi
r_{crit}=\frac{S_a}{S_m} =\frac{23.5}{60.5} =0.388
which again is less than r = 1, verifying that fatigue occurs first with n_f = 3.75.
The Gerber and the ASME-elliptic fatigue failure criteria are very close to each other and are used interchangeably. The ANSI/ASME Standard B106.1M–1985 uses ASME-elliptic for shafting.