Question 9.11: Consider a particle of charge q and mass m, free to move in ...

Consider a particle of charge q and mass m, free to move in the xy plane in response to an electromagnetic wave propagating in the z direction (Eq. 9.48—might as well set δ = 0).

E (z, t)=E_{0} \cos (k z-\omega t+\delta) \hat{ x }, \quad B (z, t)=\frac{1}{c} E_{0} \cos (k z-\omega t+\delta) \hat{ y }                       (9.48)

(b) Now calculate the resulting magnetic force on the particle.

(c) Show that the (time) average magnetic force is zero.

The problem with this naive model for the pressure of light is that the velocity is 90out of phase with the fields. For energy to be absorbed, there’s got to be some
resistance to the motion of the charges. Suppose we include a force of the form γ mv, for some damping constant γ .

(d) Repeat part (a) (ignore the exponentially damped transient). Repeat part (b), and find the average magnetic force on the particle^{9}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The fields are  E (z, t)=E_{0} \cos (k z-\omega t) \hat{ x }, B (z, t)=\frac{1}{c} E_{0} \cos (k z-\omega t) \hat{ y }, \text { with } \omega=c k .

(a) The electric force is  F _{e}=q E =q E_{0} \cos (k z-\omega t) \hat{ x }=m a =m \frac{d v }{d t} , so

v =\frac{q E_{0}}{m} \hat{ x } \int \cos (k z-\omega t) d t=-\frac{q E_{0}}{m \omega} \sin (k z-\omega t) \hat{ x }+ C.

\text { But } v _{\text {ave }}= C = 0 , \text { so } v =-\frac{q E_{0}}{m \omega} \sin (k z-\omega t) \hat{ x } .

b) The magnetic force is

F _{m}=q( v \times B )=q\left(-\frac{q E_{0}}{m \omega}\right)\left(\frac{E_{0}}{c}\right) \sin (k z-\omega t) \cos (k z-\omega t)(\hat{ x } \times \hat{ y })=-\frac{q^{2} E_{0}^{2}}{m \omega c} \sin (k z-\omega t) \cos (k z-\omega t) \hat{ z }.

(c) The (time) average force is  \left( F _{m}\right)_{ ave }=-\frac{q^{2} E_{0}^{2}}{m \omega c} \hat{ z } \int_{0}^{T} \sin (k z-\omega t) \cos (k z-\omega t) d t, \text { where } T=2 \pi / \omega is the period. The integral is -\left.\frac{1}{2 \omega} \sin ^{2}(k z-\omega t)\right|_{0} ^{T}=-\frac{1}{2 \omega}\left[\sin ^{2}(k z-2 \pi)-\sin ^{2}(k z)\right]=0, \text { so }\left( F _{m}\right)_{ ave }= 0 .

(d) Adding in the damping term,

F =q E -\gamma m v =q E_{0} \cos (k z-\omega t) \hat{ x }-\gamma m v =m \frac{d v }{d t} \Rightarrow \frac{d v }{d t}+\gamma v =\frac{q E_{0}}{m} \cos (k z-\omega t) \hat{ x }.

The steady state solution has the form  v =A \cos (k z-\omega t+\theta) \hat{ x }, \quad \frac{d v }{d t}=A \omega \sin (k z-\omega t+\theta) \hat{ x } . Putting this in, and using the trig identity  \cos u=\cos \theta \cos (u+\theta)+\sin \theta \sin (u+\theta) ,

A \omega \sin (k z-\omega t+\theta)+\gamma A \cos (k z-\omega t+\theta)=\frac{q E_{0}}{m}[\cos \theta \cos (k z-\omega t+\theta)+\sin \theta \sin (k z-\omega t+\theta)].

Equating like terms:

A \omega=\frac{q E_{0}}{m} \sin \theta, A \gamma=\frac{q E_{0}}{m} \cos \theta \Rightarrow \tan \theta=\frac{\omega}{\gamma}, A^{2}\left(\omega^{2}+\gamma^{2}\right)=\left(\frac{q E_{0}}{m}\right)^{2} \Rightarrow A=\frac{q E_{0}}{m \sqrt{\omega^{2}+\gamma^{2}}} .

So

v =\frac{q E_{0}}{m \sqrt{\omega^{2}+\gamma^{2}}} \cos (k z-\omega t+\theta) \hat{ x }, \theta \equiv \tan ^{-1}(\omega / \gamma) ; F _{m}=\frac{q^{2} E_{0}^{2}}{m c \sqrt{\omega^{2}+\gamma^{2}}} \cos (k z-\omega t+\theta) \cos (k z-\omega t) \hat{ z } .

To calculate the time average, write  \cos (k z-\omega t+\theta)=\cos \theta \cos (k z-\omega t)-\sin \theta \sin (k z-\omega t) . We already know that the average of \cos (k z-\omega t) \sin (k z-\omega t) is zero, so 

\left( F _{m}\right)_{ ave }=\frac{q^{2} E_{0}^{2}}{m c \sqrt{\omega^{2}+\gamma^{2}}} \hat{ z } \cos \theta \int_{0}^{T} \cos ^{2}(k z-\omega t) d t .

The integral is  T / 2=\pi / \omega, \text { and } \cos \theta=\gamma / \sqrt{\omega^{2}+\gamma^{2}} \text { (see figure), so }\left( F _{m}\right)_{\text {ave }}=\frac{\pi \gamma q^{2} E_{0}^{2}}{m \omega c\left(\omega^{2}+\gamma^{2}\right)} \hat{ z } .

 

9.11

Related Answered Questions