Question 2.6.14: A rotating shaft is made of 42- × 4-mm AISI 1018 cold-drawn ...

A rotating shaft is made of 42- \times 4-mm AISI 1018 cold-drawn steel tubing and has a 6-mm-diameter hole drilled transversely through it.

Estimate the factor of safety guarding against fatigue and static failures using the Gerber and Langer failure criteria for the following loading conditions:
(a) The shaft is subjected to a completely reversed torque of 120 N · m in phase with a completely reversed bending moment of 150 N · m.
(b) The shaft is subjected to a pulsating torque fluctuating from 20 to 160 N · m and a steady bending moment of 150 N · m.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here we follow the procedure of  estimating the strengths and then the stresses, followed by relating the two.

From Table A–20

Table A–20
Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm (\frac{3}{4} \text { to } 1 \frac{1}{4} \text { in ). }. These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15.
1 2 3 4 5 6 7 8
Tensile
MPa (kpsi)
Strength,
Yield Strength,
MPa (kpsi)
Elongation in
2 in, %
UNS No. SAE and/or
AISI No.
 Processing Reduction in
Area, %
Brinell
Hardness
G10060 1006 HR 300 (43) 170 (24) 30 55 86
CD 330 (48) 280 (41) 20 45 95
G10100 1010 HR 320 (47) 180 (26) 28 50 95
CD 370 (53) 300 (44) 20 40 105
G10150 1015 HR 340 (50) 190 (27.5) 28 50 101
CD 390 (56) 320 (47) 18 40 111
G10180 1018 HR 400 (58) 220 (32) 25 50 116
CD 440 (64) 370 (54) 15 40 126
G10200 1020 HR 380 (55) 210 (30) 25 50 111
CD 470 (68) 390 (57) 15 40 131
G10300 1030 HR 470 (68) 260 (37.5) 25 42 137
CD 520 (76) 440 (64) 15 35 149
G10350 1035 HR 500 (72) 270 (39.5) 20 40 143
CD 550 (80) 460 (67) 12 35 163
G10400 1040 HR 520 (76) 290 (42) 18 40 149
CD 590 (85) 490 (71) 12 35 170
G10450 1050 HR 570 (82) 310 (45) 16 40 163
CD 630 (91) 530 (77) 12 35 179
G10500 1060 HR 620 (90) 340 (49.5) 15 35 179
CD 690 (100) 580 (84) 10 30 197
G10600 1060 HR 680 (98) 370 (54) 12 30 201
G10800 1080 CD 770 (112) 420 (61.5) 10 25 229
G10950 1095 HR 830 (120) 460 (66) 10 25 248

we find the minimum strengths to be S_{ut}= 440 \ MPa \ and \ S_y=370 \ MPa.

The endurance limit of the rotating-beam specimen is 0.5\left(440\right) = 220 \ MPa.
The surface factor, obtained from Eq. (6–19)

 

K_a=aS^B_{ut}

and Table 6–2, p. 287, is

Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19)
Surface Finish Factor a Exponent
b
S{ut}, kpsi S{ut} , MPa
Ground 1.34 1.58 −0.085
Machined or cold-drawn 2.7 4.51 −0.265
Hot-rolled 14.4 57.7 −0.718
As-forged 39.9 272 −0.995

 

is

K_a=1.51S^{-0.265}_{ut}=4.51\left(440\right) ^{-0.265}=0.899

 

From Eq. (6–20)

k_{b}=\left\{\begin{array}{ll}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\(d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 \mathrm{~mm} \\1.51 d^{-0.157} & 51<d \leq 254 \mathrm{~mm} \end{array}\right.

the size factor is

k_b=\left(\frac{d}{7.62} \right) ^{-0.107}=\left(\frac{42}{7.62} \right)^{-0.107} =0.833

The remaining Marin factors are all unity, so the modified endurance strength S_e is
S_e=0.899\left(0.833\right) 220=165 MPa

(a) Theoretical stress-concentration factors are found from Table A–16.

Table A–16 Approximate Stress- Concentration Factor K_t for Bending of a Round Bar or Tube with a Transverse Round Hole Source: R. E. Peterson, Stress-Concentration Factors, Wiley,New York, 1974, pp. 146, 235
The nominal bending stress is\sigma _0= M/Znet where Z_{net}  is a reduced value of the section modulus and is defined by
Z_{net}=\frac{\pi A }{32D} \left(D^4-d^4\right)
Values of A are listed in the table. Use d = 0 for a solid bar
{d}/{D}
{a}/{D} A K_{t} A K_{t} A K_{t}
0.050 0.92 2.63 0.91 2.55 0.88 2.42
0.075 0.89 2.55 0.88 2.43 0.86 2.35
0.100 0.86 2.49 0.85 2.36 0.83 2.27
0.125 0.82 2.41 0.82 2.32 0.80 2.20
0.15 0.79 2.39 0.79 2.29 0.76 2.15
0.175 0.76 2.38 0.75 2.26 0.72 2.10
0.20 0.73 2.39 0.72 2.23 0.68 2.07
0.225 0.69 2.40 0.68 2.21 0.65 2.04
0.25 0.67 2.42 0.64 2.18 0.61 2.00
0.275 0.66 2.48 0.61 2.16 0.58 1.97
0.30 0.64 2.52 0.58 2.14 0.54 1.94

 

Using {a}/{D} ={6}/{4}2 = 0.143 \ and {d}/{D} = {34}/{42} = 0.810,

and using linear interpolation, we obtain A = 0.798 \ and \ K_t= 2.366 \ for \ bending \ ; \ and \ A = 0.89 \ and \ K_{ts}=1.75 for torsion.
Thus, for bending,
Z_{net}=\frac{\pi A }{32D} \left(D^4-d^4\right)=\frac{\pi \left(0.798\right) }{32\left(42\right) } \left[\left(42\right)^4-\left(34\right)^4 \right] =3.31\left(10^3\right) \ mm^3
and for torsion
J_{net}=\frac{\pi A }{32} \left(D^4-d^4\right)=\frac{\pi \left(0.8\right) }{32\left(42\right) } \left[\left(42\right)^4-\left(34\right)^4 \right] =155\left(10^3\right) \ mm^4

Next, using Figs. 6–20 and 6–21, pp. 295–296, with a notch radius of 3 mm we find the notch sensitivities to be 0.78 for bending and 0.81 for torsion.
The two corresponding fatigue stress-concentration factors are obtained from Eq. (6–32)

K_f=1+q\left(K_t-1\right) or K_{fs}=1+q_{shear}\left(K_{ts}-1\right)
as

K_f=1+q\left(K_t-1\right)=K_f=1+0.78\left(2.366-1\right)=2.07 K_{fs}=1+0.81\left(1.75-1\right)=1.61

The alternating bending stress is now found to be

\sigma _{xa}=K_f\frac{M}{Z_{net}} =2.07\frac{150}{3.31\left(10^{-6}\right) } =93.8\left(10^6\right) \ Pa=93.8 \ MPa

and the alternating torsional stress is

\tau _{xya}= K_{fs}\frac{TD}{2J_{net}} =1.61\frac{120\left(42\right)\left(10^{-3}\right) }{2\left(155\right)\left(10^{-9}\right) } =26.2\left(10^6\right) \ Pa= 26.2 \ MPa

The midrange von Mises component \sigma '_m is zero. The alternating component \sigma '_m is given by

\sigma '_a=\left(\sigma ^2_{xa}+3\tau ^2_{xya}\right)^{{1}/{2}}=\left[93.8^2+3\left(26.2^2\right) \right]^{{1}/{2}}=104.2 \ MPa

 

Since S_e= S_a, the fatigue factor of safety n_f is

 

n_f=\frac{S_a}{\sigma '_a} =\frac{165}{104.2} =1.58

 

The first-cycle yield factor of safety is

 

n_y=\frac{S_y}{\sigma '_a} =\frac{370}{105.6} =3.50

There is no localized yielding; the threat is from fatigue. See Fig. 6–32.
(b) This part asks us to find the factors of safety when the alternating component is due to pulsating torsion, and a steady component is due to both torsion and bending.

We have T_a={\left(160-20\right) }/{2}=70 \ N.m \ and \ T_m={\left(160+20\right) }/{2}=90 \ N.m.

 

The corresponding amplitude and steady-stress components are

 

\tau _{xya}=K_{fs}\frac{T_aD}{2J_{net}} =1.61\frac{70\left(42\right)\left(10^{-3}\right) }{2\left(155\right)\left(10^{-9}\right) } =15.3 (10^6) pa =15.3 \ MPa

 

\tau _{xym}=K_{fs}\frac{T_mD}{2J_{net}} =1.61\frac{90\left(42\right)\left(10^{-3}\right) }{2\left(155\right)\left(10^{-9}\right) } =19.7 (10^6) pa  =  19.7 \ MPa

 

The steady bending stress component \sigma _{xm}  is

 

 

 

\sigma _{xm}=K_f=\frac{M_m}{Z_{net}} =2.07\frac{150}{3.31\left(10^{-6}\right)} =93.8\left(10^6\right) \ Pa=93.8 \ MPa

 

The von Mises components \sigma' _a \ and \sigma' _m are

\sigma' _a=\left[3\left(15.3\right)^2 \right] ^{{1}/{2}}=26.5 \ MPa.

 

 

\sigma' _m=\left[93.8^2+3\left(19.7\right)^2 \right] ^{{1}/{2}}=99.8 \ MPa

 

 

From Table 6–7, p. 307,

Table 6–7
Amplitude and Steady Coordinates of Strength and Important
Intersections in First Quadrant for Gerber and Langer Failure Criteria
Intersecting Equations Intersection Coordinates
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{r^2S^2_{ut}}{S_e} \left[-1+\sqrt{1+\left(\frac{2S_e}{rS_{ut}} \right)^2 } \right]

S_m=\frac{S_a}{r}

\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{rS_y}{1+r}
S_m=\frac{rS_y}{1+r}
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
S_m=\frac{2S^2_{ut}}{2S_e} \left[1-\sqrt{1+\left(\frac{2S_e}{S_{ut}} \right)^2 \left(1-\frac{S_y}{S_e} \right) } \right]

S_{a} = S_{y} –  S _{m} ,  r_{crit}={S_a}/{S_m}

Fatigue factor of safety
n_f=\frac{1}{2} \left(\frac{S_{ut}}{\sigma _m} \right)^2\frac{\sigma _a}{S_e}\left[-1+\sqrt{1+\left(\frac{2\sigma _mS_e}{S_{ut}\sigma _a} \right)^2 } \right]    \ \sigma _m\gt  0

the fatigue factor of safety is

 

n_f=\frac{1}{2}\left(\frac{440}{99.8} \right) ^2\frac{26.5}{165} \left\{-1+\sqrt{1+\left[\frac{2\left(99.8\right)165 }{440\left(26.5\right) } \right]^2 } \right\} =3.12

 

From the same table, with r={\sigma '_a}/{\sigma'_m}={26.5}/{99.8}=0.28 , the strengths can be shownto be S_a= 85.5 \ MPa \ and \ S_m= 305 \ MPa.

See the plot in Fig. 6–32.
The first-cycle yield factor of safety n_y is

n_y=\frac{S_y}{\sigma '_a+\sigma '_m} =\frac{370}{26.5+99.8} =2.93

There is no notch yielding. The likelihood of failure may first come from first-cycle yielding at the notch. See the plot in Fig. 6–32.

6-20
6-32
6-21

Related Answered Questions