Given a part with S_{ut}= 151 kpsi and at the critical location of the part, Se= 67.5 kpsi.
For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.
Given a part with S_{ut}= 151 kpsi and at the critical location of the part, Se= 67.5 kpsi.
For the loading of Fig. 6–33, estimate the number of repetitions of the stress-time block in Fig. 6–33 that can be made before failure.
From Fig. 6–18, p. 285, for S_{ut}= 151 \ kpsi \ , \ f = 0.795.
From Eq. (6–14),
a={\left(fS_{ut}\right)^2 } / {S_e} (6–14)
a=\frac{\left(fS_{ut}\right)^2 }{S_e}=\frac{\left[0.795\left(151\right) \right]^2 }{67.5} =213.5 kpsi
From Eq.(6–15),
b=- [\log \left({fS_{ut}}/{S_e} \right) /3 (6–15)
b=-\frac{1}{3} \log \left(\frac{fS_{ut}}{S_e} \right) =-\frac{1}{3} \log \left[\frac{0.795\left(151\right) }{67.5} \right] =-0.0833so.
S_f=213.5N^{-0.0833} N=\left(\frac{S_f}{213.5} \right) ^{-{1}/{0.0833}} (1),(2)
We prepare to add two columns to the previous table. Using the Gerber fatigue criterion,
Eq. (6–47), p. 306, with S_e= S_f \ , \ and \ n = 1, we can write
Gerber \frac{n\sigma _a}{S_e} +\left(\frac{n\sigma _m}{S_{ut}} \right)^2=1 (6–47)
S_f=\begin{cases} \frac{\sigma _a}{1-\left(\frac{\sigma _m}{S _{ut}} \right) } & \sigma _m\gt 0 \\S_e&\sigma _m\leq 0 \end{cases} (3)
where S_f is the fatigue strength associated with a completely reversed stress, \sigma _{rev} ,
equivalent to the fluctuating stresses [see Ex. 6–12, part (b)].
Cycle 1: r={\sigma _a}/{\sigma _m}={70}/{10}=7 , and the strength amplitude from Table 6–7, p. 307
Table 6–7 Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria |
|
Intersecting Equations | Intersection Coordinates |
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2 =1 Load liner=\frac{S_a}{S_m} |
S_a=\frac{r^2S^2_{ut}}{2S_e} \left[-1+\sqrt{1+\left(\frac{2S_e}{rS_{ut}} \right)^2 } \right]
S_m=\frac{S_a}{r} |
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1 Load liner=\frac{S_a}{S_m} |
S_a=\frac{rS_y}{1+r} S_m=\frac{S_y}{1+r} |
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2 =1 \frac{S_a}{S_y} +\frac{S_m}{S_y} =1 |
S_m=\frac{2S^2_{ut}}{2S_e} \left[1-\sqrt{1+\left(\frac{2S_e}{S_{ut}} \right)^2 \left(1-\frac{S_y}{S_e} \right) } \right]
S_{a} = S_{y}- S_{m} , r_{crit}={S_a}/{S_m} |
Fatigue factor of safety n_f=\frac{1}{2} \left(\frac{S_{ut}}{\sigma _m} \right)^2\frac{\sigma _a}{S_e}\left[-1+\sqrt{1+\left(\frac{2\sigma _mS_e}{S_{ut}\sigma _a} \right)^2 } \right] \ \sigma _m\gt 0 |
, is
S_a=\frac{7^2151^2}{2\left(67.5\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(67.5\right) }{7\left(151\right) } \right]^2 } \right\} =67.5 kpsi
Since \sigma _a\gt S_a that is, 70\gt 67.2, life is reduced. From Eq. (3),
S_f=\frac{70}{1-\left({10}/{151}\right)^2 } =70.3 kpsi
and from Eq. (2)
N=\left(\frac{70.3}{213.5} \right) ^{-{1}/{0.0833}}=619\left(10^3\right) cycles
Cycle 2: r={10}/{50}=0.2 and the strength amplitude is
S_a=\frac{0.2^2151^2}{2\left(67.5\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(67.5\right) }{0.2\left(151\right) } \right]^2 } \right\} =24.2 kpsi
Since \sigma _a\lt S_a , that is 10 \lt 24.2, then S_f = S_e and indefinite life follows. Thus,N\longrightarrow \infty .
Cycle 3: r ={ 10}/{−30} = −0.333, and since \sigma _m \lt 0, S_f = S_e, indefinite life follows and N\longrightarrow \infty
Cycle Number | S_{f}, kpsi | N, cycles |
1 | 70.3 | 619\left(10^3\right) |
2 | 67.5 | \infty |
3 | 67.5 | \infty |
From Eq. (6–58)
D=\sum{\frac{n_i}{N_i} }the damage per block is
D=\sum{\frac{n_i}{N_i} } =N\left[\frac{1}{619\left(10^3\right) }+\frac{1}{\infty }+ \frac{1}{\infty } \right] =\frac{N}{619\left(10^3\right) }
Setting D = 1 yields N= 619\left(10^3\right) cycles.