Estimate [lstex] K_{f}[/latex] and q for the steel shaft given in Ex. 6–6, p. 296.
Estimate [lstex] K_{f}[/latex] and q for the steel shaft given in Ex. 6–6, p. 296.
From Ex. 6–6, a steel shaft with S_{ut}= 690 MPa and a shoulder with a fillet of 3 mm was found to have a theoretical stress-concentration factor of K_t.= 1.65. From
Table 6–15,
Table 6–15 Heywood’s Parameter √a and coefficients ofvariation C_{Kf} for steels | |||
\sqrt{a} \left(\sqrt{in} \right) | \sqrt{a} \left(\sqrt{mm} \right) | ||
Notch Type | S_{ut} \ in \ kpsi | S_{ut} \ in MPa | Coefficient of Variation CKf |
Transverse hole | {5}/{S_{ut}} | {174}/{S_{ut}} | 0.10 |
Shoulder | {4}/{S_{ut}} | {139}/{S_{ut}} | 0.11 |
Groove | {3}/{S_{ut}} | {104}/{S_{ut}} | 0.15 |
From Eq. (6–78),
K_f=\frac{K_t}{1+\frac{2\left(K_t-1\right) }{K_t} \frac{\sqrt{a} }{\sqrt{r} } } =\frac{1.65}{1+\frac{2\left(1.65-1\right) }{1.65} \frac{0.2014 }{\sqrt{3} } } =1.51which is 2.5 percent lower than what was found in Ex. 6–6.
From Table 6–15, CK f = 0.11. Thus from Eq. (6–79),
K_f=\bar{K} _fLN\left(1,C_{K_f}\right)K_f=1.51 LN\left(1,0.11\right)
From Eq. (6–77), with K_t= 1.65
\bar{q} =\frac{\bar{K}_f-1 }{K_t-1} \\\hat{\sigma } _q=\frac{C\bar{K}_f}{K_t-1} \\C_q=\frac{C\bar{K}_f }{\bar{K}_f-1 }
\bar{q} =\frac{1.51-1 }{1.65-1}=0.785 \\C_q=\frac{C\bar{K}_f }{\bar{K}_f-1 }=\frac{0.11\left(1.51\right) }{1.51-1 }= 0.326\\\hat{\sigma } _q=C_q\bar{q}=0.326\left(0.785\right) =0.256
So,
q = LN\left(0.785,0.256\right)