Question 2.6.19: The bar shown in Fig. 6–37 is machined from a cold-rolled fl...

The bar shown in Fig. 6–37 is machined from a cold-rolled flat having an ultimate strength of Sut=LN(87.6,5.74)S_{ut}= LN\left(87.6,5.74\right) kpsi.

The axial load shown is completely reversed.The load amplitude is Fa=LN(1000,120)F_a= LN\left(1000,120\right) lbf.
(a) Estimate the reliability.
(b) Reestimate the reliability when a rotating bending endurance test shows that Se=LN(40,2)S'_e=LN\left(40,2\right) kps.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a) From Eq. (6–70),
Sˊe={0.506SˉutLN(1,0,138)kpsi orMPaSˉut212 kpsi(1460 MPa) (1400 MPa)107LN(1,0,139) kpsiSˉut>212 kpsi740LN(1,0,139) MpaSˉut>1460 MPa \acute{S}_e =\begin{cases} 0.506\bar{S} _{ut} LN\left(1,0,138\right) kpsi \ or MPa & \bar{S} _{ut}\leq 212 \ kpsi \left(1460 \ MPa\right) \ \left(1400 \ MPa\right) \\107 LN\left(1,0,139\right) \ kpsi & \bar{S} _{ut}\gt 212 \ kpsi \\740 LN\left(1,0,139\right) \ Mpa & \bar{S} _{ut}\gt 1460 \ MPa \ \end{cases}
Sˊe=0.506SˉutLN(1,0,138)=0.506(87.6)LN(1,0.138)=44.3LN(1,0,138) kpsi\acute{S}_e= 0.506\bar{S} _{ut} LN\left(1,0,138\right) = 0.506\left(87.6\right) LN\left(1,0.138\right)= 44.3 LN\left(1,0,138\right) \ kpsi
From Eq. (6–72)
ka=aSˉutbLN(1,C)   (Sˉut in kpsi orMPa)k_a=a\bar{S} ^b_{ut} LN \left(1,C\right) \ \ \ \left(\bar{S}_{ut} \ in \ kpsi \ or MPa \right)

and Table 6–10,

Table 6–10
Parameters in Marin Surface Condition Factor
ka=aSutbLN(1,C)k_a= aS^b_{ut} LN\left(1, C\right)
a Coefficient of
Variation, C
Surface Finish kpsi MPa b
Ground* 1.34 1.58 −0.086 0.12
Machined or Cold-rolled 2.67 4.45 −0.265 0.058
Hot-rolled 14.5 58.1 −0.719 0.11
As-forged 39.8 271 −0.995 0.145

ka=2.67Sˉut0.265LN(1,0.0.58)=2.67(87.6)0.265LN(1,0.0.58)=0.816LN(1,0.058)kb=1k_a=2.67\bar{S} ^{0.265}_{ut} LN \left(1,0.0.58\right)= 2.67\left(87.6\right) ^{-0.265} LN \left(1,0.0.58\right)\\=0.816 LN\left(1,0.058\right)\\ k_b= 1 (axial loading)

From Eq. (6–73),

(kc)axial=1.23Sˉut0.0778LN(1,0.125)\left(k_c\right) _{axial}=1.23\bar{S}^{0.0778}_{ut}LN\left(1,0.125\right) kc=1.23Sˉut0.0778LN(1,0.125)=1.23(87.6)0.0778LN(1,0.125)=0.869LN(1,0.125)kd=kf=(1,0)k_c= 1.23\bar{S} ^{-0.0778}_{ut} LN\left(1,0.125\right) = 1.23\left(87.6\right)^{−0.0778}LN(1,0.125)= 0.869 LN\left(1,0.125\right)\\k_d= k_f = \left(1,0\right)

The endurance strength, from Eq. (6–71) is

Se=kakbkckdSˊeSe=0.816LN(1,0.058)LN(1,0.125)(1)(1)44.3LN(1,0.138)S_e=k_ak_bk_ck_d\acute{S} _e\\Se=0.816 LN \left(1,0.058\right) LN\left(1,0.125\right)\left(1\right)\left(1\right)44.3 LN\left(1,0.138\right)

The parameters of SeS_e are
Sˉe=0.816(0.869)44.3=31.4Cse=(0.0582+0.1252+0.1382)1/2=0.195\bar{S}_e=0.816\left(0.869\right) 44.3=31.4\\C_{se}=\left(0.058^2+0.125^2+0.138^2\right)^{{1}/{2}} =0.195

so Se=31.4LN(1,0.195)S_e= 31.4LN(1,0.195) kpsi.
In computing the stress, the section at the hole governs. Using the terminology
of Table A–15–1 we find d/w=0.50{d}/{w} = 0.50, therefore Kt.=2.18K_t.= 2.18. From Table 6–15,

Table 6–15 Heywood’s Parameter √a and coefficients ofvariation CKfC_{Kf} for steels
a(in)\sqrt{a} \left(\sqrt{in} \right) a(mm)\sqrt{a} \left(\sqrt{mm} \right)
Notch Type Sut in kpsiS_{ut} \ in \ kpsi Sut inMPaS_{ut} \ in \  MPa Coefficient of
Variation CKf
Transverse hole 5/Sut{5}/{S_{ut}} 174/Sut{174}/{S_{ut}} 0.10
Shoulder 4/Sut{4}/{S_{ut}} 139/Sut{139}/{S_{ut}} 0.11
Groove 3/Sut{3}/{S_{ut}} 104/Sut{104}/{S_{ut}} 0.15

,
a=5/Sut=5/87.6=0.0571 andCkf=0.10\sqrt{a} = {5}/{Sut}= {5}/{87.6} = 0.0571 \ and C_{kf} = 0.10.
From Eqs. (6–78) and (6–79) withr=0.375r=0.375 in ,

 

Kf=Kt1+2(Kt1)KtarLN(1,CKf)=2.181+2(2.181)2.180.05710.375LN(1,0.10)=1.98LN(1,0.10)K_f=\frac{K_t}{1+\frac{2\left(K_t-1\right) }{K_t}\frac{\sqrt{a} }{\sqrt{r} } }LN\left(1,C_{K_f}\right) =\frac{2.18}{1+\frac{2\left(2.18-1\right) }{2.18}\frac{0.0571}{\sqrt{0.375} } } LN\left(1,0.10\right)\\=1.98 LN\left(1,0.10\right)

The stress at the hole is

σ=KfFA=1.98LN(1,0.10)1000LN(1,0.12)0.25(0.75)\sigma =K_f\frac{F}{A} =1.98 LN\left(1,0.10\right) \frac{1000 LN\left(1,0.12\right) }{0.25\left(0.75\right) }

 

σˉ=1.9810000.25(0.75)103=10.56\bar{\sigma } =1.98\frac{1000}{0.25\left(0.75\right) } 10^{-3}=10.56kpsi

Cσ=(0.102+0.122)1/2=0.156C_\sigma =\left(0.10^2+0.12^2\right) ^{{1}/{2}}=0.156

so stress can be expressed as σ=10.56LN(1,0.156)\sigma = 10.56 LN\left(1,0.156\right) kpsi.
The endurance limit is considerably greater than the load-induced stress, indicating that finite life is not a problem. For interfering lognormal-lognormal distributions,
Eq. (5–43), p. 250, gives

z=ln(Seˉσˉ1+Cσ21+CSe2)ln[(1+CSe2)(1+Cσ2)]=ln(31.410.561+0.15621+0.1952)ln[(1+0.1952)(1+0.1562)]=4.37z=-\frac{\ln \left(\frac{\bar{S_e} }{\bar{\sigma } } \sqrt{\frac{1+C^2_\sigma }{1+C^2_{S_e}} } \right) }{\sqrt{\ln \left[\left(1+C^2_{S_e}\right)\left(1+C^2_\sigma \right) \right] } } =-\frac{\ln \left(\frac{31.4 }{10.56} \sqrt{\frac{1+0.156^2 }{1+0.195^2} } \right) }{\sqrt{\ln \left[\left(1+0.195^2\right)\left(1+0.156^2\right) \right] } }=4.37

From Table A–10

Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution

Φ(zα)=zα12πexp(u22)du={αzα01αzα>0\begin{aligned}\Phi\left(z_{\alpha}\right) &=\int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u \\&=\left\{\begin{array}{ll} \alpha & z_{\alpha} \leq 0 \\1-\alpha & z_{\alpha}>0 \end{array}\right.\end{aligned}

ZaZ_a 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3238 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.119 0.117
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.102 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.063 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

the probability of failure pf=Φ(4.37)=.00000635p_f = \Phi \left(−4.37\right) = .000 006 35, and the reliability is

 

R=10.0000035=0.99999365R=1-0.0000035=0.99999365

(b) The rotary endurance tests are described by Sˊe=40LN(1,0.05)\acute{S}_e=40LN\left(1,0.05\right) kpsi whose mean
is less than the predicted mean in part a. The mean endurance strength Sˉe\bar{S}_e is

Sˉe=0.816(0.869)40=28.4\bar{S}_e = 0.816\left(0.869\right)40=28.4 kpsi

 

Cse=(0.0582+0.1252+0.052)1/2=0.147C_{se}=\left(0.058^2+0.125^2+0.05^2\right)^{{1}/{2}}=0.147

so the endurance strength can be expressed as Se=28.3LN(1,0.147)S_e= 28.3LN\left(1,0.147\right) kpsi. From Eq. (5–43),

 

z=ln(28.410.561+0.15621+0.1472)ln[(1+0.1472)(1+0.1562)]=4.65z=-\frac{\ln \left(\frac{28.4}{10.56}\sqrt{\frac{1+0.156^2}{1+0.147^2} } \right) }{\sqrt{\ln \left[\left(1+0.147^2\right)\left(1+0.156^2\right) \right] } } =-4.65

Using Table A–10, we see the probability of failure pf=Φ(4.65)=0.00000171p_f = \Phi \left(−4.65\right) = 0.000 001 71,and

R=10.00000171=0.99999829R=1-0.00000171=0.99999829

an increase! The reduction in the probability of failure is (0.000001710.00000635)/0.00000635=0.73{\left( 0.00000171-0.00000635\right) }/{0.00000635}=-0.73, a reduction of 73 percent.
We are analyzing an existing design, so in part (a) the factor of safety was  nˉ=Sˉ/σˉ=31.4/10.56=2.97\bar{n} ={\bar{S} }/{\bar{\sigma }} ={31.4}/{10.56}=2.97.
In part (b)nˉ=28.4/10.56=2.69\bar{n} = {28.4}/{10.56} = 2.69,decrease. This example gives you the opportunity toseethe role of the design factor. Given knowledge ofSˉ,Cs,σˉ,Cσ\bar{S},C_s,\bar{\sigma },C_{\sigma } and reliability (through z), the mean
factor of safety(as a design factor)separatesSˉ and σˉ\bar{S} \ and \ \bar{\sigma } so that there liability goal is achieved.
Knowing nˉ\bar{n} alone says nothing about the probability of failure.
Looking at nˉ=2.97\bar{n} = 2.97 and nˉ=2.69\bar{n} = 2.69 says nothing about the respective probabilities of failure.
The tests did not reduce Seˉ\bar{S_e} significantly,but reduced the variation C_ such that there liability was increased.
When a mean design factor (or mean factor of safety) defined as Seˉ/σˉ{\bar{S_e} }/{\bar{\sigma }} is said to be silent on matters of frequency of failures, it means that a scalar factor of safety
by itself does not offer any information about probability of failure. Nevertheless,some engineers let the factor of safety speak up, and they can be wrong in their conclusions.

Related Answered Questions