Question 2.6.20: A rotating shaft experiences a steady torque T = 1360LN(1,0....

A rotating shaft experiences a steady torque T = 1360 LN\left(1,0.05\right) lbf · in, and at a shoulder with a 1.1-in small diameter, a fatigue stress-concentration factor K_f =1.50LN\left(1,0.11\right) \ , \ K_{f s}= 1.28 LN\left(1,0.11\right),  and at that location a bending mo ment of M = 1260 LN\left(1,0.05\right) lbf · in.

The material of which the shaft is machined is hot-rolled 1035 with S_{ut}= 86.2 LN\left(1,0.045\right) kpsi and S_y= 56.0 LN\left(1,0.077\right) kpsi.

Estimate the reliability using a stochastic Gerber failure zone.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Establish the endurance strength. From Eqs. (6–70) to (6–72)

 

\acute{S}_e =\begin{cases} 0.506\bar{S} _{ut} LN\left(1,0,138\right) kpsi \ or MPa & \bar{S} _{ut}\leq 212 \ kpsi \left(1460 \ MPa\right)  \\107 LN\left(1,0,139\right) \ kpsi & \bar{S} _{ut}\gt 212 \ kpsi \\740 LN\left(1,0,139\right) \ Mpa & \bar{S} _{ut}\gt 1460 \ MPa \ \end{cases}

 

S_e=k_ak_bk_ck_dk_f\acute{S} _e

 

k_a=a\bar{S} ^b_{ut} LN \left(1,C\right) \ \ \ \left(\bar{S}_{ut} \ in \ kpsi \ or MPa \right)

and Eq. (6–20), p. 288

k_b=\begin{cases}\left(d/0.3\right)^{-0.107}=0.879d^{-0.107} & 0.11\leq d\leq 2 \ in \\0.91d^{-0.157} & 2\leq d\leq 10 \ in \\\left(d/7.62\right)^{-0.107}=1.24d^{-0.107}& 2.79\leq d\leq 51 \ mm \\1.51d^{-0.157} & 51\leq d\leq 254 \ mm\end{cases}

 

S´ _e=0.506\left(86..2\right) LN\left(1,0.138\right) =43.6 LN \left(1,0.138\right) \\k_a=2.67\left(86.2\right)^{-0.265} LN\left(1,0.058\right) =0.820 LN\left(1,0.058\right) \\k_b=\left({1.1}/{0.30}\right)^{-0.107} =0.870\\k_c=k_d=k_f=LN\left(1,0\right) \\ \mathbf{S}_{e}=0.820 \mathrm{LN}(1,0.058) 0.870(43.6) \mathbf{L N}(1,0.138) \\ \bar{S} _e=0.820\left(0.870\right) 43.6=31.1 \ kpsi\\C_{se}=\left(0.058^2+0.138^2\right) ^{{1}/{2}}=0.150\\ and \ so \ S_e=31.1 LN\left(1,0.150\right) \ kpsi

 

Stress (in kpsi):

\sigma _a=\frac{32K_fM_a}{\pi d^3} =\frac{32\left(1.50\right) LN \left(1,0.11\right)1.26 LN \left(1,0.05\right) }{\pi \left(1.1\right)^3 } \\\bar{\sigma }_a=\frac{32\left(1.50\right)1.26 }{\pi \left(1.1\right)^3 } =14.5 kpsi \\C_{\sigma a}=\left(0.11^2+0.05^2\right) ^{{1}/{2}}=0.121\\\tau _m=\frac{16K_{fs}T_m}{\pi d^3} =\frac{16\left(1.28\right)LN\left(1,0.11\right) 1.36 LN\left(1,0.05\right) }{\pi \left(1.1\right)^3 } \\\bar{\tau } _m=\frac{16\left(1.28\right)1.36 }{\pi \left(1.1\right)^3 } =6.66 \ kpsi\\C_{\tau m}=\left(0.11^2+0.05^2\right) ^{{1}/{2}}=0.121\\\acute{\bar{\sigma_a }} =\left(\bar{\sigma }^2_a+3\bar{\tau }^2_a \right) ^{{1}/{2}} =\left[14.5^2+3\left(0\right)^2 \right] ^{{1}/{2}}=14.5 \ kpsi \\\acute{\bar{\sigma }} _m=\left(\bar{\sigma }^2_m+3\bar{\tau }^2_m \right)^{{1}/{}2} =\left[0+3\left(6.66\right)^2 \right] ^{{1}/{2}}=11.54 \ kpsi\\ r=\frac{\acute{\bar{\sigma}_a } }{\acute{\bar{\sigma }_m } } =\frac{14.5}{11.54} =1.26

 

Strength: From Eqs. (6–80)

 

\bar{S} _a=\frac{r^2\bar{S}^2_{ut} }{2\bar{S}_e } \left[-1+\sqrt{1+\left(\frac{2\bar{S}_e }{r\bar{S}_{ut} } \right)^2 } \right]

and (6–81),

 

C_{S a}=\frac{\left(1+C_{S u t}\right)^{2}}{1+C_{S e}} \frac{\left\{-1+\sqrt{1+\left[\frac{2 \bar{S}_{e}\left(1+C_{S e}\right)}{r \bar{S}_{u t}\left(1+C_{S u t}\right)}\right]^{2}}\right\}}{\left[-1+\sqrt{1+\left(\frac{2 \bar{S}_{e}}{r \bar{S}_{u t}}\right)^{2}}\right]}-1

 

\bar{S} _a=\frac{1.26^286.2^2 }{2\left(31.1\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(31.1\right) }{1.26\left(86.2\right) } \right]^2 } \right\} =28.9 \ kpsi

 

C_{Sa}=\frac{\left(1-0.045\right)^2}{1+0.150} \frac{-1+\sqrt{1+\left[\frac{2\left(31.1\right) \left(1+0.15\right) }{1.26\left(86.2\right) \left(1+0.045\right) } \right]^2 }}{\left[-1+\sqrt{1+\left[\frac{2\left(31.1\right) }{1.26\left(86.2\right) } \right]^2 } \right] } -1=0.134

Reliability: Since S_a=28.9 LN\left(1,0.134\right) kpsi  and \acute{\sigma } _a= 14.5LN\left(1,0.121\right) kpsi,Eq. (5–43), p. 250, gives

 

z=-\frac{\mu _{\ln S}-\mu_{\ln \sigma } }{\left(\hat{\sigma }^2_{\ln S}+ \hat{\sigma }^2_{\ln \sigma }\right)^{{1}/{2}} } =-\frac{\ln \left(\frac{\mu _S}{\mu _\sigma }\sqrt{\frac{1+C^2_\sigma }{1+C^2_S} } \right) }{\sqrt{\ln \left[\left(1+C^2_S\right)\left(1+C^2_\sigma \right) \right] } } 

 

z=-\frac{\ln \left(\frac{\bar{S_a} }{\bar{\sigma } }\sqrt{\frac{1+C^2_\sigma }{1+C^2_S} } \right) }{\sqrt{\ln \left[\left(1+C^2_S\right)\left(1+C^2_\sigma \right) \right] } } \\=-\frac{\ln \left(\frac{28.9}{14.5}\sqrt{\frac{1+0.121^2}{1+0.134^2} } \right) }{\sqrt{\ln \left[\left(1+0.134^2\right)\left(1+0.121^2\right) \right] } } =-3.83

 

From Table A–10

Table A–10
Cumulative Distribution Function of Normal (Gaussian) Distribution
\begin{aligned} \Phi\left(z_{\alpha}\right) &=\int_{-\infty}^{z_{\alpha}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u \\ &= \begin{cases}\alpha & z_{\alpha} \leq 0 \\ 1-\alpha & z_{\alpha}>0\end{cases} \end{aligned}
Z_a 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.5 0.496 0.492 0.488 0.484 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.409 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.352 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.33 0.3264 0.3238 0.3192 0.3156 0.3121
0.5 0.3085 0.305 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.281 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.242 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.209 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.166 0.1635 0.1611
1 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.123 0.121 0.119 0.117
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.102 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.063 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.025 0.0244 0.0239 0.0233
2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.017 0.0166 0.0162 0.0158 0.0154 0.015 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.011
2.3 0.0107 0.0104 0.0102 0.0099 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.0082 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
2.5 0.00621 0.00604 0.00587 0.0057 0.00554 0.00539 0.00523 0.00508 0.00494 0.0048
2.6 0.00466 0.00453 0.0044 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.0028 0.00272 0.00264

the probability of failure is p_{f} = 0.000 065, and the reliability is,

against fatigue,

 

R=1-P_f=1-0.000065=0.999935

 

The chance of first-cycle yielding is estimated by interfering S_y \ with \acute{\sigma } _{max}. The quantity \acute{\sigma } _{max} is formed from \acute{\sigma } _{a}+ \acute{\sigma } _{m}.

The mean of \acute{\sigma } _{max} is \bar{\acute{\sigma} } _a+\bar{\acute{\sigma} } _m = 14.5 + 11.54 = 26.04  kpsi.

The coefficient of variation of the sum is 0.121, since both COVs are 0.121, thus C_{\sigma \ max} =0.121.

We interfere S_y= 56LN\left(1,0.077\right) kpsi with  \acute{\sigma}_{max}=26.04 LN\left(1,0.121\right)   kpsi. The corresponding z variable is

z=-\frac{\ln \left(\frac{56}{26.4}\sqrt{\frac{1+0.121^2}{1+0.134^2} } \right) }{\sqrt{\ln \left[\left(1+0.077^2\right)\left(1+0.121^2\right) \right] } } =-5.39

 

which represents, from Table A–10, a probability of failure of approximately 0.07358 [ which   represents   3.58(10^{−8})] of first-cycle yield in the fillet.
The probability of observing a fatigue failure exceeds the probability of a yield failure, something a deterministic analysis does not foresee and in fact could lead one to expect a yield failure should a failure occur.

Look at the \acute{\sigma}_{a}S_a interference and the \acute{\sigma}_{max}S_y interference and examine the z expressions.

These control the relative probabilities. A deterministic analysis is oblivious to this and can mislead. Check your statistics text for events that are not mutually exclusive, but are independent, to quantifyn the probability of failure:

p_f = p\left(yield\right)+ p\left(fatigue\right) − p\left(yield \ and \ fatigue\right) \\= p\left(yield\right) + p\left(fatigue\right) − p\left(yield\right) p\left(fatigue\right)\\= 0.358\left(10^{-7}\right) +0.65\left(10^{-4}\right) -0.358\left(10^{-7}\right)0.65\left(10^{-4}\right) = 0.650\left(10^{-4}\right)

 

R=1- 0.650\left(10^{-4}\right) =0.999935

 

against either or both modes of failure.

Related Answered Questions