f~(z,0)=∫−∞∞A~(k)eikzdk⇒f~(z,0)∗=∫−∞∞A~(k)∗e−ikzdk. Let l≡−k; then f~(z,0)∗=
∫∞−∞A~(−l)∗eilz(−dl)=∫−∞∞A~(−l)∗eilzdl=∫−∞∞A~(−k)∗eikzdk (renaming the dummy variable l→k ).
f(z,0)=Re[f~(z,0)]=21[f~(z,0)+f~(z,0)∗]=∫−∞∞21[A~(k)+A~(−k)∗]eikzdk . Therefore
21[A~(k)+A~(−k)∗]=2π1∫−∞∞f(z,0)e−ikzdz.
Meanwhile, f~˙(z,t)=∫−∞∞A~(k)(−iω)ei(kz−ωt)dk⇒f~˙(z,0)=∫−∞∞[−iωA~(k)]eikzdk.
(Note that ω=∣k∣v, here, so it does not come outside the integral.)
f~˙(z,0)∗=∫−∞∞[iωA~(k)∗]e−ikzdk=∫−∞∞[i∣k∣vA~(k)∗]e−ikzdk=∫∞−∞[i∣l∣vA~(−l)∗]eilz(−dl)
=∫−∞∞[i∣k∣vA~(−k)∗]eikzdk=∫−∞∞[iωA~(−k)∗]eikzdk .
f˙(z,0)=Re[f~˙(z,0)]=21[f~˙(z,0)+f~˙(z,0)∗]=∫−∞∞21[−iωA~(k)+iωA~(−k)∗]eikzdk .
2−iω[A~(k)−A~(−k)∗]=2π1∫−∞∞f˙(z,0)e−ikzdz, or 21[A~(k)−A~(−k)∗]=2π1∫−∞∞[ωif˙(z,0)]e−ikzdz.
Adding these two results, we get A~(k)=2π1∫−∞∞[f(z,0)+ωif˙(z,0)]e−ikzdz . qed