Question 13.39: The strain rosette shown in the figure was used to obtain no...

The strain rosette shown in the figure was used to obtain normal strain data at a point on the free surface of a machine part.
(a) Determine the strain components εx,εy, and γxy\varepsilon_{x}, \varepsilon_{y}, \text { and } \gamma_{x y} at the point.
(b) Determine the principal strains and the maximum in-plane shear strain at the point.
(c) Draw a sketch showing the angle θp\theta_{p}, the principal strain deformations, and the maximum in-plane shear strain distortions.
(d) Determine the magnitude of the absolute maximum shear strain.
εa=410 με,εb=540 με,εc=330 με,v=0.30\varepsilon_{a}=410  \mu \varepsilon, \quad \varepsilon_{b}=-540  \mu \varepsilon, \quad \varepsilon_{c}=-330  \mu \varepsilon, \quad v=0.30

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Write three normal strain transformation equations [Eq. (13.3)], one for each strain gage, where εn\varepsilon_{n} is the measured normal strain. In each equation, the angle θ associated with each strain gage will be referenced from the positive x axis.

410με=εxcos2(0)+εysin2(0)+γxysin(0)cos(0)                     (a)540με=εxcos2(45)+εysin2(45)+γxysin(45)cos(45)                (b)330με=εxcos2(90)+εysin2(90)+γxysin(90)cos(90)            (c)\begin{aligned}&410 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(0^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(0^{\circ}\right)+\gamma_{x y} \sin \left(0^{\circ}\right) \cos \left(0^{\circ}\right)                      (a)\\&-540 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(45^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(45^{\circ}\right)+\gamma_{x y} \sin \left(45^{\circ}\right) \cos \left(45^{\circ}\right)                 (b)\\&-330 \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(90^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(90^{\circ}\right)+\gamma_{x y} \sin \left(90^{\circ}\right) \cos \left(90^{\circ}\right)             (c)\end{aligned}

From Eq. (a):

εx=410 με\varepsilon_{x}=410  \mu \varepsilon

and from Eq. (c):

εy=330 με\varepsilon_{y}=-330  \mu \varepsilon

Using these two results, solve Eq. (b) to find γxy:\gamma_{x y}:

540με=(410 με)cos2(45)+(330 με)sin2(45)+γxysin(45)cos(45)γxy=1,160 μrad\begin{aligned}-540 \mu \varepsilon &=(410  \mu \varepsilon) \cos ^{2}\left(45^{\circ}\right)+(-330  \mu \varepsilon) \sin ^{2}\left(45^{\circ}\right)+\gamma_{x y} \sin \left(45^{\circ}\right) \cos \left(45^{\circ}\right) \\& \therefore \gamma_{x y}=-1,160  \mu rad\end{aligned}

 

(b) Using these results, the principal strain magnitudes can be computed from Eq. (13.10):

εp1,p2=εx+εy2±(εxεy2)2+(γxy2)2=(410 μ)+(330 μ)2±((410 μ)(330 μ)2)2+(1,160 μ2)2=40 μ±687.9680 μ\begin{aligned}\varepsilon_{p 1, p 2} &=\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}} \\&=\frac{(410  \mu)+(-330  \mu)}{2} \pm \sqrt{\left(\frac{(410  \mu)-(-330  \mu)}{2}\right)^{2}+\left(\frac{-1,160  \mu}{2}\right)^{2}} \\&=40  \mu \pm 687.9680  \mu\end{aligned}

 

εp1=728 με    and    εp2=648 μεγmax=1,376 μrad (maximum in-plane shear strain) \begin{aligned}&\varepsilon_{p 1}=728  \mu \varepsilon \text {    and    } \varepsilon_{p 2}=-648  \mu \varepsilon \\&\gamma_{\max }=1,376  \mu rad \quad \text { (maximum in-plane shear strain) }\end{aligned}

 

tan2θp=γxy(εxεy)=1,160 μ[(410 μ)(330 μ)]=1,160 μ740 μ=1.5676θp=28.7 (clockwise from the x axis to the direction of εp1)\begin{aligned}\tan 2 \theta_{p} &=\frac{\gamma_{x y}}{\left(\varepsilon_{x}-\varepsilon_{y}\right)}=\frac{-1,160  \mu}{[(410  \mu)-(-330  \mu)]}=\frac{-1,160  \mu}{740  \mu}=-1.5676 \\&\left.\therefore \theta_{p}=-28.7^{\circ} \quad \text { (clockwise from the } x \text { axis to the direction of } \varepsilon_{p 1}\right)\end{aligned}

 

(c) The principal strain deformations and the maximum in-plane shear strain distortions are shown on the sketch below.

 

(d) The problem states that the strain readings were obtained from the free surface of a machine part.
From this statement, we can conclude that a state of plane stress exists. For plane stress, the third principal strain ε2=εp3\varepsilon_{2}=\varepsilon_{p 3} is not equal to zero. The normal strain in the z direction can be computed from Eq. 13.15:

εz=v1v(εx+εy)=0.3010.30[(410 μ)+(330 μ)]=34.2857 με\varepsilon_{z}=-\frac{v}{1-v}\left(\varepsilon_{x}+\varepsilon_{y}\right)=-\frac{0.30}{1-0.30}[(410  \mu)+(-330  \mu)]=-34.2857  \mu \varepsilon

Since εp1\varepsilon_{p 1} is positive and εp2\varepsilon_{p 2} is negative, the absolute maximum shear strain is the maximum in-plane shear strain:

γabsmax=γmax=1,376 μrad\gamma_{ abs \max }=\gamma_{\max }=1,376  \mu rad

 

 

 

 

Related Answered Questions