Question 9.39: According to Snell’s law, when light passes from an opticall...

According to Snell’s law, when light passes from an optically dense medium into a less dense one (n1>n2)\left(n_{1}>n_{2}\right) the propagation vector k bends away from the normal (Fig. 9.28). In particular, if the light is incident at the critical angle

θcsin1(n2/n1)\theta_{c} \equiv \sin ^{-1}\left(n_{2} / n_{1}\right)                             (9.200)

then θT=90\theta_{T}=90^{\circ}, and the transmitted ray just grazes the surface. If θI exceeds θc\theta_{I} \text { exceeds } \theta_{c}, there is no refracted ray at all, only a reflected one (this is the phenomenon of total internal reflection, on which light pipes and fiber optics are based). But the fields are not zero in medium 2; what we get is a so-called evanescent wave, which is rapidly attenuated and transports no energy into medium 2.262 .^{26}

A quick way to construct the evanescent wave is simply to quote the results of Sect. 9.3.3, with kT=ωn2/ck_{T}=\omega n_{2} / c and 

kT=kT(sinθTx^+cosθTz^)k _{T}=k_{T}\left(\sin \theta_{T} \hat{ x }+\cos \theta_{T} \hat{ z }\right) ;

the only change is that

sinθT=n1n2sinθI\sin \theta_{T}=\frac{n_{1}}{n_{2}} \sin \theta_{I}

is now greater than 1, and

cosθT=1sin2θT=isin2θT1\cos \theta_{T}=\sqrt{1-\sin ^{2} \theta_{T}}=i \sqrt{\sin ^{2} \theta_{T}-1}

is imaginary. (Obviously, θT\theta_{T} can no longer be interpreted as an angle!)

(a) Show that

E~T(r,t)=E~0Teκzei(kxωt)\tilde{ E }_{T}( r , t)=\tilde{ E }_{0_{T}} e^{-\kappa z} e^{i(k x-\omega t)}                                        (9.201)

where

κωc(n1sinθI)2n22 and kωn1csinθI\kappa \equiv \frac{\omega}{c} \sqrt{\left(n_{1} \sin \theta_{I}\right)^{2}-n_{2}^{2}} \quad \text { and } \quad k \equiv \frac{\omega n_{1}}{c} \sin \theta_{I}                                     (9.202)

This is a wave propagating in the x direction (parallel to the interface!), and attenuated in the z direction.

(b) Noting that α (Eq. 9.108) is now imaginary, use Eq. 9.109 to calculate the reflection coefficient for polarization parallel to the plane of incidence. [Notice that you get 100% reflection, which is better than at a conducting surface (see, for example, Prob. 9.22).]

αcosθTcosθI\alpha \equiv \frac{\cos \theta_{T}}{\cos \theta_{I}}                                      (9.108)

E~0R=(αβα+β)E~0I,E~0T=(2α+β)E~0I\tilde{E}_{0_{R}}=\left(\frac{\alpha-\beta}{\alpha+\beta}\right) \tilde{E}_{0_{I}}, \quad \tilde{E}_{0_{T}}=\left(\frac{2}{\alpha+\beta}\right) \tilde{E}_{0_{I}}                                          (9.109)

(c) Do the same for polarization perpendicular to the plane of incidence (use the results of Prob. 9.17).

(d) In the case of polarization perpendicular to the plane of incidence, show that the (real) evanescent fields are

E(r,t)=E0eκzcos(kxωt)y^B(r,t)=E0ωeκz[κsin(kxωt)x^+kcos(kxωt)z^]}\left.\begin{array}{l} E ( r , t)=E_{0} e^{-\kappa z} \cos (k x-\omega t) \hat{ y } \\B ( r , t)=\frac{E_{0}}{\omega} e^{-\kappa z}[\kappa \sin (k x-\omega t) \hat{ x }+k \cos (k x-\omega t) \hat{ z }]\end{array}\right\}                       (9.203)

(e) Check that the fields in (d) satisfy all of Maxwell’s equations (Eq. 9.67).

 (i) E=0 (iii) ×E=Bt (ii) B=0 (iv) ×B=μϵEt}\left. \begin{matrix} \text { (i) } \nabla \cdot E =0 \text {, } & \text { (iii) } \nabla \times E =-\frac{\partial B }{\partial t} \text {, } \\ \text { (ii) } \nabla \cdot B =0 \text {, } & \text { (iv) } \quad \nabla \times B =\mu \epsilon \frac{\partial E }{\partial t} \text {, } \end{matrix} \right\}                                        (9.67)

(f) For the fields in (d), construct the Poynting vector, and show that, on average, no energy is transmitted in the z direction

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
 (a) Equation 9.91E~T(r,t)=E~0Tei(kTrωt);kTr=kT(sinθTx^+cosθTz^)(xx^+yy^+zz^)=\text { (a) Equation } 9.91 \Rightarrow \tilde{ E }_{T}( r , t)=\tilde{ E }_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)} ; k _{T} \cdot r =k_{T}\left(\sin \theta_{T} \hat{ x }+\cos \theta_{T} \hat{ z }\right) \cdot(x \hat{ x }+y \hat{ y }+z \hat{ z })=

 

kT(xsinθT+zcosθT)=xkTsinθT+izkTsin2θT1=kx+iκzk_{T}\left(x \sin \theta_{T}+z \cos \theta_{T}\right)=x k_{T} \sin \theta_{T}+i z k_{T} \sqrt{\sin ^{2} \theta_{T}-1}=k x+i \kappa z , where

kkTsinθT=(ωn2c)n1n2sinθI=ωn1csinθIk \equiv k_{T} \sin \theta_{T}=\left(\frac{\omega n_{2}}{c}\right) \frac{n_{1}}{n_{2}} \sin \theta_{I}=\frac{\omega n_{1}}{c} \sin \theta_{I},

κkTsin2θT1=ωn2c(n1/n2)2sin2θI1=ωcn12sin2θIn22\kappa \equiv k_{T} \sqrt{\sin ^{2} \theta_{T}-1}=\frac{\omega n_{2}}{c} \sqrt{\left(n_{1} / n_{2}\right)^{2} \sin ^{2} \theta_{I}-1}=\frac{\omega}{c} \sqrt{n_{1}^{2} \sin ^{2} \theta_{I}-n_{2}^{2}} . So

E~T(r,t)=E~0Teκzei(kxωt)\tilde{ E }_{T}( r , t)=\tilde{ E }_{0_{T}} e^{-\kappa z} e^{i(k x-\omega t)} . qed

E~T(r,t)=E~0Tei(kTrωt),B~T(r,t)=1v2(k^T×E~T)\tilde{ E }_{T}( r , t)=\tilde{ E }_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)}, \quad \tilde{ B }_{T}( r , t)=\frac{1}{v_{2}}\left(\hat{ k }_{T} \times \tilde{ E }_{T}\right)                         (9.91)

 (b) R=E~0RE~0I2=αβα+β\text { (b) } R=\left|\frac{\tilde{E}_{0_{R}}}{\tilde{E}_{0_{I}}}\right|^{2}=\left|\frac{\alpha-\beta}{\alpha+\beta}\right| . Here β\beta is real (Eq. 9.106) and α\alpha is purely imaginary (Eq. 9.108); write α=ia\alpha=i a with a real: R=(iaβia+β)(iaβia+β)=a2+β2a2+β2=1R=\left(\frac{i a-\beta}{i a+\beta}\right)\left(\frac{-i a-\beta}{-i a+\beta}\right)=\frac{a^{2}+\beta^{2}}{a^{2}+\beta^{2}}=1 .

βμ1v1μ2v2=μ1n2μ2n1\beta \equiv \frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}=\frac{\mu_{1} n_{2}}{\mu_{2} n_{1}}                        (9.106)

(c) From Prob. 9.17, E0R=1αβ1+αβE0I, so R=1αβ1+αβ2=1iaβ1+iaβ2=(1iaβ)(1+iaβ)(1+iaβ)(1iaβ)=1E_{0_{R}}=\left|\frac{1-\alpha \beta}{1+\alpha \beta}\right| E_{0_{I}}, \text { so } R=\left|\frac{1-\alpha \beta}{1+\alpha \beta}\right|^{2}=\left|\frac{1-i a \beta}{1+i a \beta}\right|^{2}=\frac{(1-i a \beta)(1+i a \beta)}{(1+i a \beta)(1-i a \beta)}=1.

(d) From the solution to Prob. 9.17, the transmitted wave is

E~(r,t)=E~0Tei(kTrωt)y^,B~(r,t)=1v2E~0Tei(kTrωt)(cosθTx^+sinθTz^)\tilde{ E }( r , t)=\tilde{E}_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)} \hat{ y }, \quad \tilde{ B }( r , t)=\frac{1}{v_{2}} \tilde{E}_{0_{T}} e^{i\left( k _{T} \cdot r -\omega t\right)}\left(-\cos \theta_{T} \hat{ x }+\sin \theta_{T} \hat{ z }\right).

Using the results in (a): kTr=kx+iκz,sinθT=ckωn2,cosθT=icκωn2k _{T} \cdot r =k x+i \kappa z, \sin \theta_{T}=\frac{c k}{\omega n_{2}}, \cos \theta_{T}=i \frac{c \kappa}{\omega n_{2}}.

E~(r,t)=E~0Teκzei(kxωt)y^,B~(r,t)=1v2E~0Teκzei(kxωt)(icκωn2x^+ckωn2z^)\tilde{ E }( r , t)=\tilde{E}_{0_{T}} e^{-\kappa z} e^{i(k x-\omega t)} \hat{ y }, \quad \tilde{ B }( r , t)=\frac{1}{v_{2}} \tilde{E}_{0_{T}} e^{-\kappa z} e^{i(k x-\omega t)}\left(-i \frac{c \kappa}{\omega n_{2}} \hat{ x }+\frac{c k}{\omega n_{2}} \hat{ z }\right).

We may as well choose the phase constant so that E~0T \tilde{E}_{0_{T}} is real. Then

E(r,t)=E0eκzcos(kxωt)y^E ( r , t)=E_{0} e^{-\kappa z} \cos (k x-\omega t) \hat{ y };

B(r,t)=1v2E0eκzcωn2Re{[cos(kxωt)+isin(kxωt)][iκx^+kz^]}B ( r , t)=\frac{1}{v_{2}} E_{0} e^{-\kappa z} \frac{c}{\omega n_{2}} \operatorname{Re}\{[\cos (k x-\omega t)+i \sin (k x-\omega t)][-i \kappa \hat{ x }+k \hat{ z }]\}

 

=1ωE0eκz[κsin(kxωt)x^+kcos(kxωt)z^]=\frac{1}{\omega} E_{0} e^{-\kappa z}[\kappa \sin (k x-\omega t) \hat{ x }+k \cos (k x-\omega t) \hat{ z }] . qed

 (I used v2=c/n2 to simplfy B.) \text { (I used } v_{2}=c / n_{2} \text { to simplfy B.) }

 

 (e)  (i) E=y[E0eκzcos(kxωt)]=0\text { (e) } \text { (i) } \nabla \cdot E =\frac{\partial}{\partial y}\left[E_{0} e^{-\kappa z} \cos (k x-\omega t)\right]=0.

 (ii) B=x[E0ωeκzκsin(kxωt)]+z[E0ωeκzkcos(kxωt)]\text { (ii) } \nabla \cdot B =\frac{\partial}{\partial x}\left[\frac{E_{0}}{\omega} e^{-\kappa z} \kappa \sin (k x-\omega t)\right]+\frac{\partial}{\partial z}\left[\frac{E_{0}}{\omega} e^{-\kappa z} k \cos (k x-\omega t)\right]

 

=E0ω[eκzκkcos(kxωt)κeκzkcos(kxωt)]=0=\frac{E_{0}}{\omega}\left[e^{-\kappa z} \kappa k \cos (k x-\omega t)-\kappa e^{-\kappa z} k \cos (k x-\omega t)\right]=0.

 (iii) ×E=x^y^z^/x/y/z0Ey0=Eyzx^+Eyxz^\text { (iii) } \nabla \times E =\left|\begin{array}{ccc}\hat{ x } & \hat{ y } & \hat{ z } \\\partial / \partial x & \partial / \partial y & \partial / \partial z \\0 & E_{y} & 0\end{array}\right|=-\frac{\partial E_{y}}{\partial z} \hat{ x }+\frac{\partial E_{y}}{\partial x} \hat{ z }

 

=κE0eκzcos(kxωt)x^E0eκzksin(kxωt)z^=\kappa E_{0} e^{-\kappa z} \cos (k x-\omega t) \hat{ x }-E_{0} e^{-\kappa z} k \sin (k x-\omega t) \hat{ z }.

Bt=E0ωeκz[κωcos(kxωt)x^+kωsin(kxωt)z^]-\frac{\partial B }{\partial t}=-\frac{E_{0}}{\omega} e^{-\kappa z}[-\kappa \omega \cos (k x-\omega t) \hat{ x }+k \omega \sin (k x-\omega t) \hat{ z }]

 

=κE0eκzcos(kxωt)x^kE0eκzsin(kxωt)z^=×E=\kappa E_{0} e^{-\kappa z} \cos (k x-\omega t) \hat{ x }-k E_{0} e^{-\kappa z} \sin (k x-\omega t) \hat{ z }= \nabla \times E.

 (iv) ×B=x^y^z^/x/y/zBx0Bz=(BxzBzx)y^\text { (iv) } \nabla \times B =\left|\begin{array}{ccc}\hat{ x } & \hat{ y } & \hat{ z } \\\partial / \partial x & \partial /\partial y & \partial / \partial z \\B_{x} & 0 & B_{z}\end{array}\right|=\left(\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}\right) \hat{ y }

 

=[E0ωκ2eκzsin(kxωt)+E0ωeκzk2sin(kxωt)]y^=(k2κ2)E0ωeκzsin(kxωt)y^=\left[-\frac{E_{0}}{\omega} \kappa^{2} e^{-\kappa z} \sin (k x-\omega t)+\frac{E_{0}}{\omega} e^{-\kappa z} k^{2} \sin (k x-\omega t)\right] \hat{ y }=\left(k^{2}-\kappa^{2}\right) \frac{E_{0}}{\omega} e^{-\kappa z} \sin (k x-\omega t) \hat{ y }.

 Eq. 9.202k2κ2=(ωc)2[n12sin2θI(n1sinθI)2+(n2)2]=(n2ωc)2=ω2ϵ2μ2\text { Eq. } 9.202 \Rightarrow k^{2}-\kappa^{2}=\left(\frac{\omega}{c}\right)^{2}\left[n_{1}^{2} \sin ^{2} \theta_{I}-\left(n_{1} \sin \theta_{I}\right)^{2}+\left(n_{2}\right)^{2}\right]=\left(\frac{n_{2} \omega}{c}\right)^{2}=\omega^{2} \epsilon_{2} \mu_{2}.

=ϵ2μ2ωE0eκzsin(kxωt)y^=\epsilon_{2} \mu_{2} \omega E_{0} e^{-\kappa z} \sin (k x-\omega t) \hat{ y }.

μ2ϵ2Et=μ2ϵ2E0eκzωsin(kxωt)y^=×B\mu_{2} \epsilon_{2} \frac{\partial E }{\partial t}=\mu_{2} \epsilon_{2} E_{0} e^{-\kappa z} \omega \sin (k x-\omega t) \hat{ y }= \nabla \times B.

(f)

S=1μ2(E×B)=1μ2E02ωe2κzx^y^z^0cos(kxωt)0κsin(kxωt)0kcos(kxωt)S =\frac{1}{\mu_{2}}( E \times B )=\frac{1}{\mu_{2}} \frac{E_{0}^{2}}{\omega} e^{-2 \kappa z}\left|\begin{array}{ccc}\hat{ x } & \hat{ y } & \hat{ z } \\0 & \cos (k x-\omega t) & 0 \\\kappa \sin (k x-\omega t) & 0 & k \cos (k x-\omega t)\end{array}\right|

 

=E02μ2ωe2κz[kcos2(kxωt)x^κsin(kxωt)cos(kxωt)z^]=\frac{E_{0}^{2}}{\mu_{2} \omega} e^{-2 \kappa z}\left[k \cos ^{2}(k x-\omega t) \hat{ x }-\kappa \sin (k x-\omega t) \cos (k x-\omega t) \hat{ z }\right].

Averaging over a complete cycle, using cos2=1/2 and sincos=0,S=E02k2μ2ωe2κzx^\left\langle\cos ^{2}\right\rangle=1 / 2 \text { and }\langle\sin \cos \rangle=0,\langle S \rangle=\frac{E_{0}^{2} k}{2 \mu_{2} \omega} e^{-2 \kappa z} \hat{ x } . On average, then, no energy is transmitted in the z direction, only in the x direction (parallel to the interface). qed

Related Answered Questions