Question 13.76: The strain rosette shown in the Figures P13.73–P13.76 was us...

The strain rosette shown in the Figures P13.73–P13.76 was used to obtain normal strain data at a point on the free surface of a machine component.
(a) Determine the strain components \varepsilon_{x}, \varepsilon_{y}, \text { and } \gamma_{x y} at the point.
(b) Determine the principal strains and the maximum in-plane shear strain at the point.
(c) Using the results from part (b), determine the principal stresses and the maximum in-plane shear stress. Show these stresses on an appropriate sketch that indicates the orientation of the principal planes and the planes of maximum in-plane shear stress.
(d) Determine the magnitude of the absolute maximum shear stress at the point.

\begin{array}{|c|c|c|c|c|c|}\hline \text { Problem } & \varepsilon_{a} & \varepsilon_{b} & \varepsilon_{c} & E & v \\\hline \text { P13.76 } & 55  \mu \varepsilon & -110  \mu \varepsilon & -35  \mu \varepsilon & 212  GPa & 0.30 \\\hline\end{array}

The strain rosette shown in the Figures P13.73–P13.76 was used to obtain normal strain data at a point on the free surface of a machine component. (a) Determine the strain components εx, εy, and γxy at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point The strain rosette shown in the Figures P13.73–P13.76 was used to obtain normal strain data at a point on the free surface of a machine component. (a) Determine the strain components εx, εy, and γxy at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point The strain rosette shown in the Figures P13.73–P13.76 was used to obtain normal strain data at a point on the free surface of a machine component. (a) Determine the strain components εx, εy, and γxy at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point The strain rosette shown in the Figures P13.73–P13.76 was used to obtain normal strain data at a point on the free surface of a machine component. (a) Determine the strain components εx, εy, and γxy at the point. (b) Determine the principal strains and the maximum in-plane shear strain at the point

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Write three normal strain transformation equations [Eq. (13.3)], one for each strain gage, where \varepsilon_{n} is the measured normal strain. In each equation, the angle θ associated with each strain gage will be referenced from the positive x axis.

\begin{aligned}&55  \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(315^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(315^{\circ}\right)+\gamma_{x y} \sin \left(315^{\circ}\right) \cos \left(315^{\circ}\right)                     (a)\\&-110  \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(0^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(0^{\circ}\right)+\gamma_{x y} \sin \left(0^{\circ}\right) \cos \left(0^{\circ}\right)                          (b) \\&-35  \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(45^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(45^{\circ}\right)+\gamma_{x y} \sin \left(45^{\circ}\right) \cos \left(45^{\circ}\right)                    (c)\end{aligned}

From Eq. (b):

\varepsilon_{x}=-110  \mu \varepsilon

Using this result, solve Eqs. (a) and (c) simultaneously to obtain:

\varepsilon_{y}=130  \mu \varepsilon \text {    and    } \quad \gamma_{x y}=-90  \mu rad

 

(b) Using these results, the principal strain magnitudes can be computed from Eq. (13.10):

\begin{aligned}\varepsilon_{p 1, p 2} &=\frac{\varepsilon_{x}+\varepsilon_{y}}{2} \pm \sqrt{\left(\frac{\varepsilon_{x}-\varepsilon_{y}}{2}\right)^{2}+\left(\frac{\gamma_{x y}}{2}\right)^{2}} \\&=\frac{(-110  \mu)+(130  \mu)}{2} \pm \sqrt{\left(\frac{(-110  \mu)-(130  \mu)}{2}\right)^{2}+\left(\frac{-90  \mu}{2}\right)^{2}} \\&=10  \mu \pm 128.1601  \mu\end{aligned}

 

\begin{aligned}&\varepsilon_{p 1}=138.1601  \mu \varepsilon=138.2  \mu \varepsilon \text {    and    } \varepsilon_{p 2}=-118.1601  \mu \varepsilon=-118.2  \mu \varepsilon \\&\gamma_{\max }=256.3201  \mu rad =256  \mu rad \quad \text { (maximum in-plane shear strain) }\end{aligned}

 

\begin{aligned}&\tan 2 \theta_{p}=\frac{\gamma_{x y}}{\left(\varepsilon_{x}-\varepsilon_{y}\right)}=\frac{-90  \mu}{[(-110  \mu)-(130  \mu)]}=\frac{-90  \mu}{-240  \mu}=0.3750 \\&\left.\therefore \theta_{p}=10.28^{\circ} \quad \text { (counterclockwise from the } x \text { axis to the direction of } \varepsilon_{p 2}\right)\end{aligned}

 

(c) Use \varepsilon_{p 1} \text { and } \varepsilon_{p 2} in Eqs. (13.23) to compute \sigma_{p 1}:

\begin{aligned}\sigma_{p 1} &=\frac{E}{1-v^{2}}\left(\varepsilon_{p 1}+v \varepsilon_{p 2}\right)=\frac{212,000  MPa }{1-(0.3)^{2}}\left[\left(138.1601 \times 10^{-6}\right)+(0.3)\left(-118.1601 \times 10^{-6}\right)\right] \\&=23.9285  MPa =23.9  MPa ( T )\end{aligned}

and \sigma_{p 2}:

\begin{aligned}\sigma_{p 2} &=\frac{E}{1-v^{2}}\left(\varepsilon_{p 2}+v \varepsilon_{p 1}\right)=\frac{212,000  MPa }{1-(0.3)^{2}}\left[\left(-118.1601 \times 10^{-6}\right)+(0.3)\left(138.1601 \times 10^{-6}\right)\right] \\&=-17.8714  MPa =17.87  MPa ( C )\end{aligned}

The maximum in-plane shear stress can be computed from the two principal stresses:

\tau_{\max }=\frac{\left|\sigma_{p 1}-\sigma_{p 2}\right|}{2}=\frac{|(23.9285  MPa )-(-17.8714  MPa )|}{2}=20.8999  MPa =20.9  MPa

and the normal stress on the plane of maximum shear stress is

\sigma_{ avg }=\frac{\sigma_{p 1}+\sigma_{p 2}}{2}=\frac{(23.9285  MPa )+(-17.8714  MPa )}{2}=3.0286  MPa =3.03  MPa ( T )

 

(d) For plane stress, \sigma_{z}=\sigma_{p 3}=0. Since \sigma_{p 1} \text { and } \sigma_{p 2} are of opposite signs,

\tau_{ abs \max }=\tau_{\max }=20.9  MPa

 

 

 

Related Answered Questions