Question 13.77: A solid 18-mm-diameter shaft is subjected to an axial load P...

A solid 18-mm-diameter shaft is subjected to an axial load P. The shaft is made of aluminum [E = 70 GPa; ν = 0.33]. A strain gage is mounted on the shaft at the orientation shown in Figure P13.77.
(a) If P = 14.7 kN, determine the strain reading that would be expected from the gage.
(b) If the gage indicates a strain value of ε = 810 με, determine the axial force P applied to the shaft.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From the given diameter, the cross-sectional area of the shaft is

A=π4(18 mm)2=254.46900 mm2A=\frac{\pi}{4}(18  mm )^{2}=254.46900  mm ^{2}

and thus, the normal stress in the shaft is

σx=PA=(14.7 kN)(1,000 N/kN)254.46900 mm2=57.767 MPa\sigma_{x}=\frac{P}{A}=\frac{(14.7  kN )(1,000  N / kN )}{254.46900  mm ^{2}}=57.767  MPa

At the location of the strain gage, the stresses in the shaft can be summarized as

σx=57.767 MPa,σy=0 MPa,τxy=0 MPa\sigma_{x}=57.767  MPa , \quad \sigma_{y}=0  MPa , \quad \tau_{x y}=0  MPa

From Eqs. (13.21), the normal strains in the x and y directions are

εx=1E(σxvσy)=170,000 MPa[57.767 MPa(0.33)(0 MPa)]=825.248×106 mm/mmεy=1E(σyvσx)=170,000 MPa[0 MPa(0.33)(57.767 MPa)]=272.332×106 mm/mm\begin{aligned}&\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right)=\frac{1}{70,000  MPa }[57.767  MPa -(0.33)(0  MPa )]=825.248 \times 10^{-6}  mm / mm \\&\varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right)=\frac{1}{70,000  MPa }[0  MPa -(0.33)(57.767  MPa )]=-272.332 \times 10^{-6}  mm / mm\end{aligned}

and since the shear stress is zero, the shear strain is also zero: γxy\gamma_{x y} = 0.

Write a normal strain transformation equation for the gage oriented at θ = 145°:

εn=εxcos2θ+εysin2θ+γxysinθcosθ=(825.248 με)cos2(145)+(272.332 με)sin2(145)+(0 μrad)sin(145)cos(145)=464.155 με\begin{aligned}\varepsilon_{n} &=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\&=(825.248  \mu \varepsilon) \cos ^{2}\left(145^{\circ}\right)+(-272.332  \mu \varepsilon) \sin ^{2}\left(145^{\circ}\right)+(0  \mu rad ) \sin \left(145^{\circ}\right) \cos \left(145^{\circ}\right) \\&=464.155  \mu \varepsilon\end{aligned}

Therefore, the strain gage should be expected to read a normal strain of

εn=464 με\varepsilon_{n}=464  \mu \varepsilon

 

(b) A normal strain transformation equation can be written for the gage:

εn=εxcos2θ+εysin2θ+γxysinθcosθ810 με=εxcos2(145)+εysin2(145)\begin{gathered}\varepsilon_{n}=\varepsilon_{x} \cos ^{2} \theta+\varepsilon_{y} \sin ^{2} \theta+\gamma_{x y} \sin \theta \cos \theta \\\therefore 810  \mu \varepsilon=\varepsilon_{x} \cos ^{2}\left(145^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(145^{\circ}\right)\end{gathered}

Recognize that there is no shear stress τxy=0\tau_{x y}=0, and hence, γxy=0\gamma_{x y}=0.

From Eqs. (13.21), substitute for εx and εy:\varepsilon_{x} \text { and } \varepsilon_{y}:

810 με=1E(σxvσy)cos2(145)+1E(σyvσx)sin2(145)810  \mu \varepsilon=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right) \cos ^{2}\left(145^{\circ}\right)+\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right) \sin ^{2}\left(145^{\circ}\right)

and eliminate terms of σy\sigma_{y} since σy\sigma_{y} = 0 for the shaft:

810 με=σxEcos2(145)vσxEsin2(145)810  \mu \varepsilon=\frac{\sigma_{x}}{E} \cos ^{2}\left(145^{\circ}\right)-\frac{v \sigma_{x}}{E} \sin ^{2}\left(145^{\circ}\right)

Solve for σx\sigma_{x}:

σx=(810 με)E[cos2(145)vsin2(145)]=(810×106)(70,000 MPa)[cos2(145)(0.33)sin2(145)]=100.810 MPa\begin{aligned}\sigma_{x} &=\frac{(810  \mu \varepsilon) E}{\left[\cos ^{2}\left(145^{\circ}\right)-v \sin ^{2}\left(145^{\circ}\right)\right]} \\&=\frac{\left(810 \times 10^{-6}\right)(70,000  MPa )}{\left[\cos ^{2}\left(145^{\circ}\right)-(0.33) \sin ^{2}\left(145^{\circ}\right)\right]} \\&=100.810  MPa\end{aligned}

The axial load P that causes this normal stress is

P=σxA=(100.810 N/mm2)(254.46900 mm2)=25,653.06 N=25.7 kNP=\sigma_{x} A=\left(100.810  N / mm ^{2}\right)\left(254.46900  mm ^{2}\right)=25,653.06  N =25.7  kN

 

 

 

 

Related Answered Questions