Question 10.26: An expanding sphere, radius R(t) = υt (t > 0, constant υ)...

An expanding sphere, radius R(t) = υt (t > 0, constant υ) carries a charge Q, uniformly distributed over its volume. Evaluate the integral

Q_{ eff }=\int \rho\left( r , t_{r}\right) d \tau

with respect to the center. Show that Q_{ cff } \approx Q\left(1-\frac{3 v}{4 c}\right), \text { if } v \ll c.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\rho( r , t)= \begin{cases}\frac{Q}{(4 / 3) \pi R^{3}}=\frac{3 Q}{4 \pi v^{3} t^{3}}, & (r<R=v t) \\ 0, & \text { (otherwise) }\end{cases}

For a point at the center, t_{r}=t-r / c , so

\rho\left( r , t_{r}\right)= \begin{cases}\frac{3 Q}{4 \pi v^{3}(t-r / c)^{3}}=\frac{3 Q}{4 \pi(v / c)^{3}(c t-r)^{3}}, & \left(r<v(t-r / c) \Rightarrow r<\frac{v t}{1+v / c}\right) \\ 0, & (\text { otherwise })\end{cases}

Let a \equiv v t /(1+v / c) ; then

Q_{ eff }=\frac{3 Q}{4 \pi(v / c)^{3}} \int_{0}^{a} \frac{1}{(c t-r)^{3}} 4 \pi r^{2} d r=\frac{3 Q}{(v / c)^{3}} \int_{0}^{a} \frac{r^{2}}{(c t-r)^{3}} d r

 

=-\left.\frac{3 Q}{(v / c)^{3}}\left[\ln (c t-r)+\frac{2 c t}{(c t-r)}-\frac{(c t)^{2}}{2(c t-r)^{2}}\right]\right|_{0} ^{a}

 

=-\frac{3 Q}{(v / c)^{3}}\left[\ln (c t-a)+\frac{2 c t}{(c t-a)}-\frac{(c t)^{2}}{2(c t-a)^{2}}-\ln (c t)-2+\frac{1}{2}\right]

 

=\frac{3 Q}{(v / c)^{3}}\left[\frac{3}{2}+\ln \left(\frac{c t}{c t-a}\right)-2\left(\frac{c t}{c t-a}\right)+\frac{1}{2}\left(\frac{c t}{c t-a}\right)^{2}\right].

\text { Now, } c t-a=c t-\frac{v t}{1+v / c}=\frac{c t}{1+v / c}\left(1+\frac{v}{c}-\frac{v}{c}\right)=\frac{c t}{1+v / c}, \text { so } \frac{c t}{c t-a}=1+\frac{v}{c} , and hence

Q_{ eff }=\frac{3 Q}{(v / c)^{3}}\left[\frac{3}{2}+\ln \left(1+\frac{v}{c}\right)-2\left(1+\frac{v}{c}\right)+\frac{1}{2}\left(1+\frac{v}{c}\right)^{2}\right]

 

=\frac{3 Q}{(v / c)^{3}}\left[\frac{3}{2}+\ln \left(1+\frac{v}{c}\right)-2-2 \frac{v}{c}+\frac{1}{2}+\frac{v}{c}+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right]=\frac{3 Q}{(v / c)^{3}}\left[\ln \left(1+\frac{v}{c}\right)-\frac{v}{c}+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right].

\text { If } \epsilon \ll 1, \text { then } \ln (1+\epsilon)=\epsilon-\frac{1}{2} \epsilon^{2}+\frac{1}{3} \epsilon^{3}-\frac{1}{4} \epsilon^{4}+\ldots, \text { so for } v \ll c,

Q_{ eff } \approx \frac{3 Q}{(v / c)^{3}}\left[\frac{v}{c}-\frac{1}{2}\left(\frac{v}{c}\right)^{2}+\frac{1}{3}\left(\frac{v}{c}\right)^{3}-\frac{1}{4}\left(\frac{v}{c}\right)^{4}-\frac{v}{c}+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right]=Q\left(1-\frac{3 v}{4 c}\right).

Related Answered Questions