Check that the potentials of a point charge moving at constant velocity (Eqs. 10.49 and 10.50) satisfy the Lorenz gauge condition (Eq. 10.12)
V( r , t)=\frac{1}{4 \pi \epsilon_{0}} \frac{q c}{\sqrt{\left(c^{2} t- r \cdot v \right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right)}} (10.49)
A ( r , t)=\frac{\mu_{0}}{4 \pi} \frac{q c v }{\sqrt{\left(c^{2} t- r \cdot v \right)^{2}+\left(c^{2}-v^{2}\right)\left(r^{2}-c^{2} t^{2}\right)}} (10.50)
\nabla \cdot A =-\mu_{0} \epsilon_{0} \frac{\partial V}{\partial t} (10.12)