Question 10.29: We are now in a position to treat the example in Sect. 8.2.1...

We are now in a position to treat the example in Sect. 8.2.1 quantitatively. Suppose q_{1} \text { is at } x_{1}=-v t \text { and } q_{2} \text { is at } y=-v t (Fig. 8.3, with t < 0). Find the electric and magnetic forces on q_{1} \text { and } q_{2} . Is Newton’s third law obeyed? 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { The electric field of } \left.q_{1} \text { at } q_{2} \text { [Eq. 10.75, with } \theta=45^{\circ} \text { and } R =(-v t \hat{ x }+v t \hat{ y })\right] is

E _{1}=\frac{q_{1}}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} / 2 c^{2}\right)^{3 / 2}} \frac{1}{2 \sqrt{2}(v t)^{2}}(-\hat{ x }+\hat{ y }).

E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}}                                     (10.75)

The magnetic field [Eq. 10.76, with\left. v _{1}=-v \hat{ x }\right] is

B _{1}=\frac{1}{c^{2}}\left( v _{1} \times E \right)=-\frac{v}{c^{2}}(\hat{ x } \times E )=-\frac{v}{c^{2}} \frac{q_{1}}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} / 2 c^{2}\right)^{3 / 2}} \frac{1}{2 \sqrt{2}(v t)^{2}} \hat{ z }.

B =\frac{1}{c}(\hat{ᴫ} \times E )=\frac{1}{c^{2}}( v \times E )

The force on q_{2} is therefore [Lorentz force law with \left. v _{2}=-v \hat{ y }\right]

 

F _{2}=q_{2}\left( E _{1}+ v _{2} \times B _{1}\right)=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} / 2 c^{2}\right)^{3 / 2}} \frac{1}{2 \sqrt{2}(v t)^{2}}\left(-\hat{ x }+\hat{ y }+\frac{v^{2}}{c^{2}} \hat{ x }\right) .

The electric field q_{2} \text { at } q_{1} \text { is reversed, } E _{2}=- E _{1} ; \text { so is the magnetic field } B _{2}=- B _{1} . The electric force is also reversed, but the magnetic force now points in the y direction instead of the x direction. So the force on q_{1} is

F _{1}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} / 2 c^{2}\right)^{3 / 2}} \frac{1}{2 \sqrt{2}(v t)^{2}}\left(\hat{ x }-\hat{ y }+\frac{v^{2}}{c^{2}} \hat{ y }\right).

The forces are equal in magnitude, but not opposite in direction. No,

Related Answered Questions