Question 10.30: A uniformly charged rod (length L, charge density λ) slides ...

A uniformly charged rod (length L, charge density λ) slides out the x axis at constant speed υ . At time t = 0 the back end passes the origin (so its position as a function of time is x = υt, while the front end is at x = υt + L). Find the retarded scalar potential at the origin, as a function of time, for t > 0. [First determine the retarded time t_{1} for the back end, the retarded time t_{2} for the front end, and the corresponding retarded positions x_{1} \text { and } x_{2} .] Is your answer consistent with the Liénard-Wiechert potential, in the point charge limit (L \ll v t, \text { with } \lambda L=q)? Do not assume v \ll c .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
c\left(t-t_{1}\right)=v t_{1}, t=t_{1}(1+v / c), t_{1}=\frac{t}{1+v / c} . \quad c\left(t-t_{2}\right)=v t_{2}+L, t-L / c=t_{2}(1+v / c), \quad t_{2}=\frac{t-L / c}{1+v / c}

 

x_{1}=v t_{1}=\frac{v t}{1+v / c} \cdot \quad x_{2}=v t_{2}+L=\frac{v(t-L / c)}{1+v / c}+L=\frac{v t-v L / c+L+v L / c}{1+v / c}=\frac{v t+L}{1+v / c} .

V( 0 , t)=\frac{1}{4 \pi \epsilon_{0}} \int_{x_{1}}^{x_{2}} \frac{\lambda}{x} d x=\frac{\lambda}{4 \pi \epsilon_{0}} \ln \left(\frac{x_{2}}{x_{1}}\right)=\frac{\lambda}{4 \pi \epsilon_{0}} \ln \left(\frac{v t+L}{v t}\right) .

\text { If } L \ll v t, V=\frac{\lambda}{4 \pi \epsilon_{0}} \ln \left(1+\frac{L}{v t}\right) \approx \frac{\lambda}{4 \pi \epsilon_{0}} \frac{L}{v t}=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{v t}\right) . The \text { Liénard }-Wiechert potential is

V=\frac{q}{4 \pi \epsilon_{0}(ᴫ- ᴫ \cdot v / c)} . Here

(ᴫ- ᴫ \cdot v / c)=v t_{r}+v^{2} t_{r} / c=v(1+v / c) t_{r}=v(1+v / c) \frac{t}{1+v / c}=v t .

\text { (In the limit } \left.L \rightarrow 0, t_{r}=t_{1}=t_{2} .\right) \quad \text { So } V=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{v t}\right).

 

Related Answered Questions