Question 10.32: ^22 A particle of charge q1 is at rest at the origin. A seco...

^{22} A particle of charge q_{1} is at rest at the origin. A second particle, of charge q_{2}, moves along the z axis at constant velocity υ.

(a) Find the force F _{12}(t) \text { of } q_{1} \text { on } q_{2} \text {, at time } t \text { (when } q_{2} \text { is at } z=v t \text { ) } .

(b) Find the force F _{21}(t) \text { of } q_{2} \text { on } q_{1} , at time t. Does Newton’s third law hold, in this case? 

(c) Calculate the linear momentum p(t) in the electromagnetic fields, at time t. (Don’t bother with any terms that are constant in time, since you won’t need them in part (d)). \text { [Answer: } \left.\left(\mu_{0} q_{1} q_{2} / 4 \pi t\right) \hat{ z }\right]

(d) Show that the sum of the forces is equal to minus the rate of change of the momentum in the fields, and interpret this result physically

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } F _{12}(t)=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{(v t)^{2}} \hat{ z } .

(b) From Eq. 10.75, with \theta=180^{\circ}, R=v t, \text { and } \hat{ R }=-\hat{ z }:

F _{21}(t)=-\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}\left(1-v^{2} / c^{2}\right)}{(v t)^{2}} \hat{ z } .

E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}}                                    (10.75)

No, Newton’s third law does not hold: F _{12} \neq F _{21} because of the extra factor \left(1-v^{2} / c^{2}\right) .

(c) From Eq. 8.28,

p =\mu_{0} \epsilon_{0} \int_{ \nu } S d \tau                      (8.28)

p =\epsilon_{0} \int( E \times B ) d \tau . \text { Here } E = E _{1}+ E _{2} . Here E = E _{1}+ E _{2}, \text { whereas } B = B _{2}, \text { so } E \times B =\left( E _{1} \times B _{2}\right)+\left( E _{2} \times B _{2}\right) \text {. }.

But the latter, when integrated over all space, is independent of time. We want only the time-dependent part:

p (t)=\epsilon_{0} \int\left( E _{1} \times B _{2}\right) d \tau . \text { Now } E _{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1}}{r^{2}} \hat{ r }, \text { while, from Eq. } 10.76, B _{2}=\frac{1}{c^{2}}\left( v \times E _{2}\right) , and (Eq. 10.75)

B =\frac{1}{c}(\hat{ᴫ} \times E )=\frac{1}{c^{2}}( v \times E )                                 (10.76)

E _{2}=\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{\left(1-v^{2} / c^{2}\right)}{\left(1-v^{2} \sin ^{2} \theta^{\prime} / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}} . \operatorname{But} R = r – v t ; R^{2}=r^{2}+v^{2} t^{2}-2 r v t \cos \theta ; \sin \theta^{\prime}=\frac{r \sin \theta}{R} . So

E _{ 2 }=\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{\left(1-v^{2} / c^{2}\right)}{\left[1-(v r \sin \theta / R c)^{2}\right]^{3 / 2}} \frac{( r – v t)}{R^{3}} . Finally, noting that v \times( r – v t)= v \times r =v r \sin \theta \hat{\phi}  , we get

B _{2}=\frac{q_{2}\left(1-v^{2} / c^{2}\right)}{4 \pi \epsilon_{0} c^{2}} \frac{v r \sin \theta}{\left[R^{2}-(v r \sin \theta / c)^{2}\right]^{3 / 2}} \hat{\phi} . \text { So } p (t)=\epsilon_{0} \frac{q_{1}}{4 \pi \epsilon_{0}} \frac{q_{2}\left(1-v^{2} / c^{2}\right) v}{4 \pi \epsilon_{0} c^{2}} \int \frac{1}{r^{2}} \frac{r \sin \theta(\hat{ r } \times \hat{ \phi })}{\left[R^{2}-(v r \sin \theta / c)^{2}\right]^{3 / 2}}.

\operatorname{But} \hat{ r } \times \hat{ \phi }=-\hat{ \theta }=-(\cos \theta \cos \phi \hat{ x }+\cos \theta \sin \phi \hat{ y }-\sin \theta \hat{ z }) , and the x and y components integrate to zero, so:

p (t)=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{(4 \pi c)^{2} \epsilon_{0}} \int \frac{\sin ^{2} \theta}{r\left[r^{2}+(v t)^{2}-2 r v t \cos \theta-(v r \sin \theta / c)^{2}\right]^{3 / 2}} r^{2} \sin \theta d r d \theta d \phi

 

=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{8 \pi c^{2} \epsilon_{0}} \int \frac{r \sin ^{3} \theta}{\left[r^{2}+(v t)^{2}-2 r v t \cos \theta-(v r \sin \theta / c)^{2}\right]^{3 / 2}} d r d \theta .

I’ll do the r integral first. According to the CRC Tables,

\int_{0}^{\infty} \frac{x}{\left(a+b x+c x^{2}\right)^{3 / 2}} d x=-\left.\frac{2(b x+2 a)}{\left(4 a c-b^{2}\right) \sqrt{a+b x+c x^{2}}}\right|_{0} ^{\infty}=-\frac{2}{4 a c-b^{2}}\left[\frac{b}{\sqrt{c}}-\frac{2 a}{\sqrt{a}}\right]

 

=-\frac{2}{\sqrt{c}\left(4 a c-b^{2}\right)}(b-2 \sqrt{a c})=\frac{2}{\sqrt{c}} \frac{(2 \sqrt{a c}-b)}{(2 \sqrt{a c}-b)(2 \sqrt{a c}+b)}=\frac{2}{\sqrt{c}}(2 \sqrt{a c}+b)^{-1} .

\text { In this case } x=r, a=(v t)^{2}, b=-2 v t \cos \theta, \text { and } c=1-(v / c)^{2} \sin ^{2} \theta . \text { So the } r \text { integral } is

\frac{2}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[2 v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}-2 v t \cos \theta\right]}=\frac{1}{v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[\sqrt{1-(v / c)^{2} \sin ^{2} \theta}-\cos \theta\right]}

 

=\frac{\left[\sqrt{1-(v / c)^{2} \sin ^{2} \theta}+\cos \theta\right]}{v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[1-(v / c)^{2} \sin ^{2} \theta-\cos ^{2} \theta\right]}=\frac{1}{v t \sin ^{2} \theta\left(1-v^{2} / c^{2}\right)}\left[1+\frac{\cos \theta}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}}\right] .

So

p (t)=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{8 \pi c^{2} \epsilon_{0}} \frac{1}{v t\left(1-v^{2} / c^{2}\right)} \int_{0}^{\pi} \frac{1}{\sin ^{2} \theta}\left[1+\frac{\cos \theta}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}}\right] \sin ^{3} \theta d \theta

 

=\frac{q_{1} q_{2} \hat{ z }}{8 \pi c^{2} \epsilon_{0} t}\left\{\int_{0}^{\pi} \sin \theta d \theta+\frac{c}{v} \int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{(c / v)^{2}-\sin ^{2} \theta}} d \theta\right\} .

\text { But } \int_{0}^{\pi} \sin \theta d \theta=2 \text {. In the second integral let } u \equiv \cos \theta, \text { so } d u=-\sin \theta d \theta :

\int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{(c / v)^{2}-\sin ^{2} \theta}} d \theta=\int_{-1}^{1} \frac{u}{\sqrt{(c / v)^{2}-1+u^{2}}} d u=0 (the integrand is odd, and the interval is even).

Conclusion: p (t)=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t} \hat{ z } (plus a term constant in time).

(d)

F _{12}+ F _{21}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{v^{2} t^{2}} \hat{ z }-\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}\left(1-v^{2} / c^{2}\right)}{v^{2} t^{2}} \hat{ z }=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} v^{2} t^{2}}\left(1-1+\frac{v^{2}}{c^{2}}\right) \hat{ z }=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} c^{2} t^{2}} \hat{ z }=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t^{2}} \hat{ z }.

-\frac{d p }{d t}=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t^{2}} \hat{ z }= F _{12}+ F _{21} . qed

\text { Since } q_{1} \text { is at rest, and } q_{2} is moving at constant velocity, there must be another force \left( F _{\text {mech }}\right) acting on them, to balance F _{12}+ F _{21} ; what we have found is that F _{\text {mech }}=d p _{ em } / d t , which means that the impulse imparted to the system by the external force ends up as momentum in the fields. [For further discussion of this problem see J. J. G. Scanio, Am. J. Phys. 43, 258 (1975).]

10.32

Related Answered Questions